Fourth exercise sheet for the lecture

XML and Programming Languages

Dr. Janis Voigtländer

Summer Term 2009

Exercise 11

Use the alternative CoreXPath semantics to give a "query tree" (over F_{axis} , \cap , etc.) for efficient evaluation of /descendant :: $a/b[c/d \lor \neg(\text{following} :: *)]$.

Exercise 12

Discuss the general complexity, in terms of query size and data size, of query evaluation using the alternative CoreXPath semantics, under the assumption that operations like F_{axis} , \cap , etc. execute in linear time depending on the sizes of their input sets. \diamond

Exercise 13

A CoreXPath path p_1 is said to semantically contain another one p_2 , written $p_1 \supseteq p_2$, if for every tree document and node n therein, $[\![p_1]\!]_{NodeSet}(n) \supseteq [\![p_2]\!]_{NodeSet}(n)$.

- 1. Let $p_1 = r[(a/b) \wedge (a/c)]/d$ and $p_2 = r[(a[b]/c) \wedge d]/d$. Check whether $p_1 \supseteq p_2$ and/or $p_1 \subseteq p_2$.
- 2. Let $p_1 = a/b/c$ and $p_2 = a/b[c]/c$. Check whether $p_1 \supseteq p_2$ and/or $p_1 \subseteq p_2$.

Exercise 14

A CoreXPath path p_1 is said to be semantically equivalent to another one p_2 , written $p_1 \equiv p_2$, if $p_1 \supseteq p_2$ and $p_1 \subseteq p_2$. Prove the following equivalences, where the t_i and q_i are arbitrary:

1. descendant:: $t_1[q_1]$ /parent:: $t_2[q_2] \equiv \text{descendant-or-self}::t_2[q_2 \land t_1[q_1]]$

2.
$$t_1[q_1 \land (\mathsf{parent}::t_2[q_2])] \equiv \mathsf{self}::t_2[q_2]/t_1[q_1]$$

$$\diamond$$