Second exercise sheet for the lecture

XML and Programming Languages

Dr. Janis Voigtländer

Summer Term 2009

Exercise 4

Consider the DTD $d = (r, \{r \to a^*, a \to bc, b \to c | \epsilon, c \to \epsilon\})$. Using the construction from the lecture, give an FSA recognizing exactly $\mathcal{L}(d)$.

Exercise 5

- 1. Recall the DTD $(r, \{r \to a, a \to a | \epsilon\})$ from the lecture, for which $\mathcal{L}(d)$ was not regular. Assume that a validator will only get well-balanced input strings. Is it then possible to detect, among those only, the string representations of tree documents valid with respect to d?
- 2. What about the DTD $(r, \{r \to a | \epsilon, a \to b, b \to a | \epsilon\})$?
- 3. Or the DTD $(a, \{a \rightarrow b^*, b \rightarrow a^*\})$?
- 4. Or the DTD $(r, \{r \to aa, a \to a | \epsilon\})$?
- 5. Or the DTD $(a, \{a \to ab | ca | \epsilon, b \to \epsilon, c \to \epsilon\})$?
- 6. Try to formalize a notion of *weak validation* capturing the above idea. \diamond

Exercise 6

For those DTDs d from Exercise 5 for which weak validation does not work, give context free grammars that generate exactly $\mathcal{L}(d)$.