
October 22, 2004

The Impact of seq on Free Theorems-Based
Program Transformations

Janis Voigtländer∗

Dresden University of Technology

http://wwwtcs.inf.tu-dresden.de/∼voigt

(joint work with Patricia Johann)

�

Supported by the “Deutsche Forschungsgemeinschaft” under grant KU 1290/2-4.

1

Free theorems [Wadler, 1989]: Example

filter :: ∀α. (α → Bool) → [α] → [α]

filter p [] = []

filter p (x : xs) = if p x then x : filter p xs

else filter p xs

The following law for appropriately typed p, h, and l:

filter p (map h l) = map h (filter (p ◦ h) l) (1)

can be derived solely from the parametric polymorphic type of filter !

(Note: Due to the use of recursion and pattern matching, the original ap-

proach of [Wadler, 1989] would yield law (1) only for strict h, but follow-

ing [Launchbury & Paterson, 1996] one can recover the unrestricted form.)

2

The strict evaluation primitive seq (in Haskell)

To avoid unneeded laziness, evaluation can be forced explicitly using the

polymorphic primitive seq , which evaluates its first argument to weak head

normal form before returning its second argument. In terms of denotational

semantics:

seq :: ∀α β. α → β → β

seq ⊥ b = ⊥

seq a b = b , if a 6= ⊥

But the language definition [Peyton Jones (ed), 2003] warns:

“However, the provision of seq has important semantic consequences,

because it is available at every type. As a consequence, ⊥ is not the

same as (λ x → ⊥), since seq can be used to distinguish them. For

the same reason, the existence of seq weakens Haskell’s parametricity

properties.”

3

Program transformation: foldr/build [Gill et al., 1993]

foldr :: ∀α β. (α → β → β) → β → [α] → β

foldr c n [] = n

foldr c n (a : as) = c a (foldr c n as)

build :: ∀α. (∀β. (α → β → β) → β → β) → [α]

build g = g (:) []

Ostensibly we have for appropriately typed g, c, and n:

foldr c n (build g) = g c n (2)

but each of the following instantiations makes only the right-hand side ⊥:

g = seq c = ⊥ n = 0

g = (λ c n → seq n (c ⊥ ⊥)) c = (:) n = ⊥

• Can law (2) fail also in other ways (than the rhs being less defined)?

• Under which conditions is the foldr/build transformation safe?

4

Key to free theorems: Relational interpretations of types

For every type τ and every relation environment η that maps all free variables

of τ to relations between closed types, we define a relation ∆ ��� � by induction

on the type structure:

∆ � � � = η(α)

∆ � � � � � � = {(f, g) | ∀(x, y) ∈ ∆ ��� �. (f x, g y) ∈ ∆ � � � �}

∆ � �	� � � � = {(u, v) | ∀τ1, τ2, R ∈ Rel(τ1, τ2). (u �

1
, v �

2
) ∈ ∆ ��� �[

 � �]}

∆Bool � � = idBool

∆[�] � � = lift [](∆ ��� �)

The abstraction or parametricity theorem [Reynolds, 1983, Wadler, 1989]

implies the following fundamental property of the relational interpretations:

if t :: τ is a closed term of closed type, then:

(t, t) ∈ ∆ ��� � (3)

5

But seq breaks its parametricity property!

According to the fundamental property (3), we should have:

(seq , seq) ∈ ∆ � � �
� � � � � �
� �

⇔ ∀R ∈ Rel(τ1, τ2), S ∈ Rel(τ

�

1, τ

�

2). (seq �

1

� �

1

, seq �

2

� �

2

) ∈ ∆ � � � � �
� [

 � � �
� � �

]

⇔ ∀R ∈ Rel(τ1, τ2), S ∈ Rel(τ

�

1, τ

�

2), (a1, a2) ∈ ∆ � � [

 � � �
� � �

], (b1, b2) ∈ ∆ �
� [

 � � �
� � �

].

(seq �

1

� �

1

a1 b1, seq �

2

� �

2

a2 b2) ∈ ∆ �
� [

 � � �
� � �

]

⇔ ∀R ∈ Rel(τ1, τ2), S ∈ Rel(τ

�

1, τ

�

2), (a1, a2) ∈ R, (b1, b2) ∈ S.

(seq �

1

� �

1

a1 b1, seq �

2

� �

2

a2 b2) ∈ S

But this statement is falsified, e.g., by the following instantiation:

R = {(a, ⊥Bool) | a :: Bool}

S = {(b, b) | b :: Bool}.

Hence, also other terms that are built using seq might violate their para-

metricity properties!

6

Our recipe

1. Restrict quantified relations in such a way that seq does

fulfill its parametricity property.

2. Adapt relational actions so that they preserve the chosen

set of restrictions (but still lend themselves for the inductive

proof over the structure of typing derivations).

3. Choose restrictions carefully (not too rigid) so that inequa-

tional statements come into reach when equational laws

break down.

[Johann & V., 2004] Free the-

orems in the presence of seq.

Proc. POPL’04, SIGPLAN No-

tices 39(1):99–110. ACM Press.

7

Adapted relational interpretations of types

∆seq� � � = η(α)

∆seq

� � � � � � = {(f, g) | (f 6= ⊥ ⇒ g 6= ⊥) ∧ ∀(x, y) ∈ ∆seq

� � �. (f x, g y) ∈ ∆seq

� � � �}

∆seq� � � ��� � = {(u, v) | ∀τ1, τ2, R ∈ Relseq(τ1, τ2). (u �

1
, v �

2
) ∈ ∆seq

��� �[

 � �]}

∆seq
Bool � � = vBool

∆seq

[�] � � = v ; lift [](∆
seq

��� �)

where Relseq denotes the set of all relations R such that:

(⊥, ⊥) ∈ R (strictness)

(∀i. (x �, y �) ∈ R) ⇒ (
⊔

x �,
⊔

y �) ∈ R (continuity)

∀(x, y) ∈ R. x 6= ⊥ ⇒ y 6= ⊥ (totality)

v ; R = R (left-closedness)

8

A new parametricity theorem

In the presence of seq (and fixpoint recursion and algebraic datatypes) holds:

if t :: τ is a closed term of closed type, then:

(t, t) ∈ ∆seq

��� � (4)

More generally, in analogy to Reynolds’ identity extension lemma, we use:

if τ is a closed type, then:

∆seq
� � � = v � (5)

9

Restoring foldr/build

In the presence of seq we obtain for appropriately typed g, c, and n:

foldr c n (build g) w g c n (6)

if c ⊥ ⊥ 6= ⊥ and n 6= ⊥, then:

foldr c n (build g) = g c n (7)

• foldr/build is at least partially correct in the presence of seq , which was

not known previously

• none of the preconditions can be dropped from law (7)

• law (7) just “accidentally” coincides with what the conventional wisdom

had to say about foldr/build in the presence of seq

• the restrictions can actually hinder fusion opportunities; consider, e.g.,

concat = foldr (++) []

10

Program transformation: destroy/unfoldr [Svenningsson, 2002]

data Maybe α = Nothing | Just α

unfoldr :: ∀α β. (β → Maybe (α, β)) → β → [α]

unfoldr f b = case f b of Nothing → []

Just (a, b

�

) → a : unfoldr f b

�

destroy :: ∀α γ. (∀β. (β → Maybe (α, β)) → β → γ) → [α] → γ

destroy g = g listpsi

where listpsi [] = Nothing

listpsi (a : as) = Just (a, as)

We want for appropriately typed g, psi , and e:

destroy g (unfoldr psi e) v g psi e (8)

But there are devious counterexamples using seq !

11

Restoring destroy/unfoldr

In the presence of seq we obtain for appropriately typed g, psi , and e:

if psi 6= ⊥ and psi ⊥ is ⊥ or Just ⊥, then:

destroy g (unfoldr psi e) v g psi e (9)

if psi is strict and total and never returns Just ⊥, then:

destroy g (unfoldr psi e) w g psi e (10)

• none of the preconditions can be dropped from laws (9) and (10)

• the restrictions in law (9) are fulfilled at least for every producer of a

nonempty finite list

• the restriction regarding Just ⊥ in law (10) is merely an artifact of using

the modularly constructed type Maybe (α, β) instead of a tailored one

• seq compromises the duality between foldr/build and destroy/unfoldr

12

Program transformation: vanish [V., 2002]

vanish++ :: ∀α. (∀β. β → (α → β → β) → (β → β → β) → β) → [α]

vanish++ g = g (λ x → x) (λ x h ys → x : h ys) (◦) []

vanish rev :: ∀α. (∀β. β → (α → β → β) → (β → β) → β) → [α]

vanish rev g = fst (g (λ ys → (ys, ys))

(λx h ys → (x : (fst (h ys)), snd (h (x : ys))))

(λ h ys → swap (h ys))

[])

In the absence of seq we have for appropriately typed gs:

g [] (:) (++) = vanish++ g (11)

g [] (:) reverse v vanish rev g (12)

But for (11) there are counterexamples using seq !

13

Restoring vanish++

In the presence of seq we obtain for appropriately typed g:

g [] (:) (++) v vanish++ g (13)

• there is no way — in the presence of seq — to recover an equational

variant of law (13) while also preserving its nature as a free theorem

• analogous inequational laws in the presence of seq hold also for the other

vanish combinators

14

Conclusions

• seq is really weird

• not all is lost w.r.t. program transformations

• inequational free theorems are an essential gain:

– they appear to capture the essence of the impact of seq

on free theorems

– when an informed change of termination behavior is ac-

ceptable, they tend to provide useful results where an

approach insisting on equational laws would have to im-

pose much stronger restrictions or would fail completely

– whenever an equational law exists, it seems to be avail-

able as well through combination of inequational ones

15

Directions for future research

• contain the weakening of free theorems due to seq using

a qualified type system along the lines of [Launchbury &

Paterson, 1996]

• consider “asymmetric” relational interpretations of types

for purely nonstrict languages, e.g., to establish law (8) in

the absence of seq

• investigate free theorems for purely strict languages

• establish connections to Pitts’ operational approach to para-

metricity [Pitts, 2000]

• study the impact of other primitives, such as the ones used

to incorporate I/O and stateful references in Haskell

References

[Gill, Launchbury & Peyton Jones, 1993] A short cut to deforestation. In Proceedings of

Functional Programming Languages and Computer Architecture. ACM Press.

[Johann & Voigtländer, 2004] Free Theorems in the Presence of seq. In Proceedings of Prin-

ciples of Programming Languages. ACM Press.

[Launchbury & Paterson, 1996] Parametricity and unboxing with unpointed types. In Pro-

ceedings of European Symposium on Programming. LNCS, vol. 1058. Springer-Verlag.

[Peyton Jones (ed), 2003] Haskell 98 Language and Libraries: The Revised Report. CUP.

[Pitts, 2000] Parametric polymorphism and operational equivalence. Math. Struct. Comput.

Sci., 10, 321–359.

[Reynolds, 1983] Types, abstraction and parametric polymorphism. In Proceedings of Infor-

mation Processing. Elsevier Science Publishers B.V.

[Svenningsson, 2002] Shortcut fusion for accumulating parameters & zip-like functions. In

Proceedings of International Conference on Functional Programming. ACM Press.

[Voigtländer, 2002] Concatenate, reverse and map vanish for free. In Proceedings of Interna-

tional Conference on Functional Programming. ACM Press.

[Wadler, 1989] Theorems for free! In Proceedings of Functional Programming Languages and

Computer Architecture. ACM Press.

