
Type-Based Reasoning for Real Languages

Janis Voigtländer

University of Bonn

PPL’10

Parametric Polymorphism in Haskell

A standard function:

map :: (α→ β)→ [α]→ [β]

map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4]

— α, β 7→ Int, Int

map not [True,False] = [False,True]

— α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False]

— α, β 7→ Int,Bool

map not [1, 2, 3] rejected at compile-time

1

Parametric Polymorphism in Haskell

A standard function:

map :: (α→ β)→ [α]→ [β]

map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4]

— α, β 7→ Int, Int

map not [True,False] = [False,True]

— α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False]

— α, β 7→ Int,Bool

map not [1, 2, 3] rejected at compile-time

1

Parametric Polymorphism in Haskell

A standard function:

map :: (α→ β)→ [α]→ [β]

map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4]

— α, β 7→ Int, Int

map not [True,False] = [False,True]

— α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False]

— α, β 7→ Int,Bool

map not [1, 2, 3] rejected at compile-time

1

Parametric Polymorphism in Haskell

A standard function:

map :: (α→ β)→ [α]→ [β]

map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4]

— α, β 7→ Int, Int

map not [True,False] = [False,True]

— α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False]

— α, β 7→ Int,Bool

map not [1, 2, 3] rejected at compile-time

1

Parametric Polymorphism in Haskell

A standard function:

map :: (α→ β)→ [α]→ [β]

map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4]

— α, β 7→ Int, Int

map not [True,False] = [False,True]

— α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False]

— α, β 7→ Int,Bool

map not [1, 2, 3]

 rejected at compile-time

1

Parametric Polymorphism in Haskell

A standard function:

map :: (α→ β)→ [α]→ [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4]

— α, β 7→ Int, Int

map not [True,False] = [False,True]

— α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False]

— α, β 7→ Int,Bool

map not [1, 2, 3]

 rejected at compile-time

1

Parametric Polymorphism in Haskell

A standard function:

map :: (α→ β)→ [α]→ [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4] — α, β 7→ Int, Int

map not [True,False] = [False,True] — α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False] — α, β 7→ Int,Bool

map not [1, 2, 3]

 rejected at compile-time

1

Parametric Polymorphism in Haskell

A standard function:

map :: (α→ β)→ [α]→ [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4] — α, β 7→ Int, Int

map not [True,False] = [False,True] — α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False] — α, β 7→ Int,Bool

map not [1, 2, 3] rejected at compile-time

1

Parametric Polymorphism in Haskell

A standard function:

map :: (α→ β)→ [α]→ [β]

map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4] — α, β 7→ Int, Int

map not [True,False] = [False,True] — α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False] — α, β 7→ Int,Bool

map not [1, 2, 3] rejected at compile-time

1

Another Example

takeWhile :: (α→ Bool)→ [α]→ [α]
takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

Provable by induction.

2

Another Example

takeWhile :: (α→ Bool)→ [α]→ [α]
takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

Provable by induction.

2

Another Example

takeWhile :: (α→ Bool)→ [α]→ [α]
takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

Provable by induction.

Or as a “free theorem” [Wadler, FPCA’89].

2

Another Example

takeWhile :: (α→ Bool)→ [α]→ [α]

takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

Provable by induction.

Or as a “free theorem” [Wadler, FPCA’89].

2

Another Example

takeWhile :: (α→ Bool)→ [α]→ [α]

filter :: (α→ Bool)→ [α]→ [α]

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

filter p (map f l) = map f (filter (p ◦ f) l)

2

Another Example

takeWhile :: (α→ Bool)→ [α]→ [α]

filter :: (α→ Bool)→ [α]→ [α]

g :: (α→ Bool)→ [α]→ [α]

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

filter p (map f l) = map f (filter (p ◦ f) l)

g p (map f l) = map f (g (p ◦ f) l)

2

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map f l) and l always have equal length.

I Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l ,

except that in the
former case it outputs their images under f .

I g p (map f l) is equivalent to map f (g (p ◦ f) l).

I That is what was claimed!

3

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map f l) and l always have equal length.

I Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l ,

except that in the
former case it outputs their images under f .

I g p (map f l) is equivalent to map f (g (p ◦ f) l).

I That is what was claimed!

3

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map f l) and l always have equal length.

I Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l ,

except that in the
former case it outputs their images under f .

I g p (map f l) is equivalent to map f (g (p ◦ f) l).

I That is what was claimed!

3

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map f l) and l always have equal length.

I Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l ,

except that in the
former case it outputs their images under f .

I g p (map f l) is equivalent to map f (g (p ◦ f) l).

I That is what was claimed!

3

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map f l) and l always have equal length.

I Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l ,

except that in the
former case it outputs their images under f .

I g p (map f l) is equivalent to map f (g (p ◦ f) l).

I That is what was claimed!

3

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map f l) and l always have equal length.

I Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l ,

except that in the
former case it outputs their images under f .

I g p (map f l) is equivalent to map f (g (p ◦ f) l).

I That is what was claimed!

3

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map f l) and l always have equal length.

I Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l ,

except that in the
former case it outputs their images under f .

I g p (map f l) is equivalent to map f (g (p ◦ f) l).

I That is what was claimed!

3

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map f l) and l always have equal length.

I Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

I g p (map f l) is equivalent to map f (g (p ◦ f) l).

I That is what was claimed!

3

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map f l) and l always have equal length.

I Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

I g p (map f l) is equivalent to map f (g (p ◦ f) l).

I That is what was claimed!

3

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map f l) and l always have equal length.

I Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

I g p (map f l) is equivalent to map f (g (p ◦ f) l).

I That is what was claimed!

3

Automatic Generation of Free Theorems

At http://www-ps.iai.uni-bonn.de/ft:

4

http://www-ps.iai.uni-bonn.de/ft

Automatic Generation of Free Theorems

4

Some Applications

I Short Cut Fusion [Gill et al., FPCA’93]

I The Dual of Short Cut Fusion [Svenningsson, ICFP’02]

I Circular Short Cut Fusion [Fernandes et al., Haskell’07]

I . . .

I Knuth’s 0-1-principle and the like [Day et al., Haskell’99],
[V., POPL’08]

I Bidirectionalisation [V., POPL’09]

I Reasoning about invariants for monadic programs
[V., ICFP’09]

5

Some Applications

I Short Cut Fusion [Gill et al., FPCA’93]

I The Dual of Short Cut Fusion [Svenningsson, ICFP’02]

I Circular Short Cut Fusion [Fernandes et al., Haskell’07]

I . . .

I Knuth’s 0-1-principle and the like [Day et al., Haskell’99],
[V., POPL’08]

I Bidirectionalisation [V., POPL’09]

I Reasoning about invariants for monadic programs
[V., ICFP’09]

5

Some Applications

I Short Cut Fusion [Gill et al., FPCA’93]

I The Dual of Short Cut Fusion [Svenningsson, ICFP’02]

I Circular Short Cut Fusion [Fernandes et al., Haskell’07]

I . . .

I Knuth’s 0-1-principle and the like [Day et al., Haskell’99],
[V., POPL’08]

I Bidirectionalisation [V., POPL’09]

I Reasoning about invariants for monadic programs
[V., ICFP’09]

5

Some Applications

I Short Cut Fusion [Gill et al., FPCA’93]

I The Dual of Short Cut Fusion [Svenningsson, ICFP’02]

I Circular Short Cut Fusion [Fernandes et al., Haskell’07]

I . . .

I Knuth’s 0-1-principle and the like [Day et al., Haskell’99],
[V., POPL’08]

I Bidirectionalisation [V., POPL’09]

I Reasoning about invariants for monadic programs
[V., ICFP’09]

5

Some Applications

I Short Cut Fusion [Gill et al., FPCA’93]

I The Dual of Short Cut Fusion [Svenningsson, ICFP’02]

I Circular Short Cut Fusion [Fernandes et al., Haskell’07]

I . . .

I Knuth’s 0-1-principle and the like [Day et al., Haskell’99],
[V., POPL’08]

I Bidirectionalisation [V., POPL’09]

I Reasoning about invariants for monadic programs
[V., ICFP’09]

5

Some Applications

I Short Cut Fusion [Gill et al., FPCA’93]

I The Dual of Short Cut Fusion [Svenningsson, ICFP’02]

I Circular Short Cut Fusion [Fernandes et al., Haskell’07]

I . . .

I Knuth’s 0-1-principle and the like [Day et al., Haskell’99],
[V., POPL’08]

I Bidirectionalisation [V., POPL’09]

I Reasoning about invariants for monadic programs
[V., ICFP’09]

5

Automatic Generation of Free Theorems

At http://www-ps.iai.uni-bonn.de/ft:

6

http://www-ps.iai.uni-bonn.de/ft

A Simpler Example

Question: What do we know about functions of type
(α, α)→ α ?

Intuitively: Can only be fst or snd
(or semantically equivalent to one of them).

But how to give a formal answer?

Clearly, any g of that type must semantically be a collection of
functions of types (τ, τ)→ τ , indexed over by τ .

But this also allows a g with

gBool (x , y) = not x and
gInt (x , y) = y + 1 ,

which is not possible in Haskell at type (α, α)→ α !

To prevent this, we have to compare

gBool :: (Bool,Bool)→ Bool vs. gInt :: (Int, Int)→ Int

and ensure that they “behave identically”. But how?

7

A Simpler Example

Question: What do we know about functions of type
(α, α)→ α ?

Intuitively: Can only be fst or snd

(or semantically equivalent to one of them).

But how to give a formal answer?

Clearly, any g of that type must semantically be a collection of
functions of types (τ, τ)→ τ , indexed over by τ .

But this also allows a g with

gBool (x , y) = not x and
gInt (x , y) = y + 1 ,

which is not possible in Haskell at type (α, α)→ α !

To prevent this, we have to compare

gBool :: (Bool,Bool)→ Bool vs. gInt :: (Int, Int)→ Int

and ensure that they “behave identically”. But how?

7

A Simpler Example

Question: What do we know about functions of type
(α, α)→ α ?

Intuitively: Can only be fst or snd
(or semantically equivalent to one of them).

But how to give a formal answer?

Clearly, any g of that type must semantically be a collection of
functions of types (τ, τ)→ τ , indexed over by τ .

But this also allows a g with

gBool (x , y) = not x and
gInt (x , y) = y + 1 ,

which is not possible in Haskell at type (α, α)→ α !

To prevent this, we have to compare

gBool :: (Bool,Bool)→ Bool vs. gInt :: (Int, Int)→ Int

and ensure that they “behave identically”. But how?

7

A Simpler Example

Question: What do we know about functions of type
(α, α)→ α ?

Intuitively: Can only be fst or snd
(or semantically equivalent to one of them).

But how to give a formal answer?

Clearly, any g of that type must semantically be a collection of
functions of types (τ, τ)→ τ , indexed over by τ .

But this also allows a g with

gBool (x , y) = not x and
gInt (x , y) = y + 1 ,

which is not possible in Haskell at type (α, α)→ α !

To prevent this, we have to compare

gBool :: (Bool,Bool)→ Bool vs. gInt :: (Int, Int)→ Int

and ensure that they “behave identically”. But how?

7

A Simpler Example

Question: What do we know about functions of type
(α, α)→ α ?

Intuitively: Can only be fst or snd
(or semantically equivalent to one of them).

But how to give a formal answer?

Clearly, any g of that type must semantically be a collection of
functions of types (τ, τ)→ τ , indexed over by τ .

But this also allows a g with

gBool (x , y) = not x and
gInt (x , y) = y + 1 ,

which is not possible in Haskell at type (α, α)→ α !

To prevent this, we have to compare

gBool :: (Bool,Bool)→ Bool vs. gInt :: (Int, Int)→ Int

and ensure that they “behave identically”. But how?

7

A Simpler Example

Question: What do we know about functions of type
(α, α)→ α ?

Intuitively: Can only be fst or snd
(or semantically equivalent to one of them).

But how to give a formal answer?

Clearly, any g of that type must semantically be a collection of
functions of types (τ, τ)→ τ , indexed over by τ .

But this also allows a g with

gBool (x , y) = not x and
gInt (x , y) = y + 1

,

which is not possible in Haskell at type (α, α)→ α !

To prevent this, we have to compare

gBool :: (Bool,Bool)→ Bool vs. gInt :: (Int, Int)→ Int

and ensure that they “behave identically”. But how?

7

A Simpler Example

Question: What do we know about functions of type
(α, α)→ α ?

Intuitively: Can only be fst or snd
(or semantically equivalent to one of them).

But how to give a formal answer?

Clearly, any g of that type must semantically be a collection of
functions of types (τ, τ)→ τ , indexed over by τ .

But this also allows a g with

gBool (x , y) = not x and
gInt (x , y) = y + 1 ,

which is not possible in Haskell at type (α, α)→ α !

To prevent this, we have to compare

gBool :: (Bool,Bool)→ Bool vs. gInt :: (Int, Int)→ Int

and ensure that they “behave identically”. But how?

7

A Simpler Example

Question: What do we know about functions of type
(α, α)→ α ?

Intuitively: Can only be fst or snd
(or semantically equivalent to one of them).

But how to give a formal answer?

Clearly, any g of that type must semantically be a collection of
functions of types (τ, τ)→ τ , indexed over by τ .

But this also allows a g with

gBool (x , y) = not x and
gInt (x , y) = y + 1 ,

which is not possible in Haskell at type (α, α)→ α !

To prevent this, we have to compare

gBool :: (Bool,Bool)→ Bool vs. gInt :: (Int, Int)→ Int

and ensure that they “behave identically”.

But how?

7

A Simpler Example

Question: What do we know about functions of type
(α, α)→ α ?

Intuitively: Can only be fst or snd
(or semantically equivalent to one of them).

But how to give a formal answer?

Clearly, any g of that type must semantically be a collection of
functions of types (τ, τ)→ τ , indexed over by τ .

But this also allows a g with

gBool (x , y) = not x and
gInt (x , y) = y + 1 ,

which is not possible in Haskell at type (α, α)→ α !

To prevent this, we have to compare

gBool :: (Bool,Bool)→ Bool vs. gInt :: (Int, Int)→ Int

and ensure that they “behave identically”. But how?
7

Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!

In the example (g :: (α, α)→ α):

I Choose a relation R ⊆ Bool× Int.

I Call (x1, x2) :: (Bool,Bool) and (y1, y2) :: (Int, Int)
related if (x1, y1) ∈ R and (x2, y2) ∈ R.

I Call f1 :: (Bool,Bool)→ Bool, f2 :: (Int, Int)→ Int
related if related inputs lead to related outputs.

I Then gBool and gInt with

gBool (x , y) = not x
gInt (x , y) = y + 1

are not related for choice of, e.g., R = {(True, 1)}.
Reynolds: g :: τ , with α free in τ , iff for every τ1, τ2,R ⊆ τ1 × τ2,

gτ1 is related to gτ2 by the “propagation” of R
(replaced for α) along τ .

8

Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!

In the example (g :: (α, α)→ α):

I Choose a relation R ⊆ Bool× Int.

I Call (x1, x2) :: (Bool,Bool) and (y1, y2) :: (Int, Int)
related if (x1, y1) ∈ R and (x2, y2) ∈ R.

I Call f1 :: (Bool,Bool)→ Bool, f2 :: (Int, Int)→ Int
related if related inputs lead to related outputs.

I Then gBool and gInt with

gBool (x , y) = not x
gInt (x , y) = y + 1

are not related for choice of, e.g., R = {(True, 1)}.
Reynolds: g :: τ , with α free in τ , iff for every τ1, τ2,R ⊆ τ1 × τ2,

gτ1 is related to gτ2 by the “propagation” of R
(replaced for α) along τ .

8

Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!

In the example (g :: (α, α)→ α):

I Choose a relation R ⊆ Bool× Int.

I Call (x1, x2) :: (Bool,Bool) and (y1, y2) :: (Int, Int)
related if (x1, y1) ∈ R and (x2, y2) ∈ R.

I Call f1 :: (Bool,Bool)→ Bool, f2 :: (Int, Int)→ Int
related if related inputs lead to related outputs.

I Then gBool and gInt with

gBool (x , y) = not x
gInt (x , y) = y + 1

are not related for choice of, e.g., R = {(True, 1)}.
Reynolds: g :: τ , with α free in τ , iff for every τ1, τ2,R ⊆ τ1 × τ2,

gτ1 is related to gτ2 by the “propagation” of R
(replaced for α) along τ .

8

Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!

In the example (g :: (α, α)→ α):

I Choose a relation R ⊆ Bool× Int.

I Call (x1, x2) :: (Bool,Bool) and (y1, y2) :: (Int, Int)
related if (x1, y1) ∈ R and (x2, y2) ∈ R.

I Call f1 :: (Bool,Bool)→ Bool, f2 :: (Int, Int)→ Int
related if related inputs lead to related outputs.

I Then gBool and gInt with

gBool (x , y) = not x
gInt (x , y) = y + 1

are not related for choice of, e.g., R = {(True, 1)}.
Reynolds: g :: τ , with α free in τ , iff for every τ1, τ2,R ⊆ τ1 × τ2,

gτ1 is related to gτ2 by the “propagation” of R
(replaced for α) along τ .

8

Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!

In the example (g :: (α, α)→ α):

I Choose a relation R ⊆ Bool× Int.

I Call (x1, x2) :: (Bool,Bool) and (y1, y2) :: (Int, Int)
related if (x1, y1) ∈ R and (x2, y2) ∈ R.

I Call f1 :: (Bool,Bool)→ Bool, f2 :: (Int, Int)→ Int
related if related inputs lead to related outputs.

I Then gBool and gInt with

gBool (x , y) = not x
gInt (x , y) = y + 1

are not related for choice of, e.g., R = {(True, 1)}.

Reynolds: g :: τ , with α free in τ , iff for every τ1, τ2,R ⊆ τ1 × τ2,
gτ1 is related to gτ2 by the “propagation” of R
(replaced for α) along τ .

8

Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!

In the example (g :: (α, α)→ α):

I Choose a relation R ⊆ Bool× Int.

I Call (x1, x2) :: (Bool,Bool) and (y1, y2) :: (Int, Int)
related if (x1, y1) ∈ R and (x2, y2) ∈ R.

I Call f1 :: (Bool,Bool)→ Bool, f2 :: (Int, Int)→ Int
related if related inputs lead to related outputs.

I Then gBool and gInt with

gBool (x , y) = not x
gInt (x , y) = y + 1

are not related for choice of, e.g., R = {(True, 1)}.
Reynolds: g :: τ , with α free in τ , iff for every τ1, τ2,R ⊆ τ1 × τ2,

gτ1 is related to gτ2 by the “propagation” of R
(replaced for α) along τ .

8

Deriving Free Theorems, in General

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {((x1, x2), (y1, y2)) | (x1, y1) ∈ R, (x2, y2) ∈ S}
[R] = {([x1, . . . , xn], [y1, . . . , yn]) | n ≥ 0, (xi , yi) ∈ R}
R → S = {(f1, f2) | ∀(a1, a2) ∈ R. (f1 a1, f2 a2) ∈ S}
∀R.F(R) = {(u, v) | ∀τ1, τ2,R ⊆ τ1 × τ2. (uτ1 , vτ2) ∈ F(R)}

Then for every g :: τ , the pair (g, g) is contained in the relational
interpretation of τ .

9

Deriving Free Theorems, in General

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {((x1, x2), (y1, y2)) | (x1, y1) ∈ R, (x2, y2) ∈ S}
[R] = {([x1, . . . , xn], [y1, . . . , yn]) | n ≥ 0, (xi , yi) ∈ R}
R → S = {(f1, f2) | ∀(a1, a2) ∈ R. (f1 a1, f2 a2) ∈ S}
∀R.F(R) = {(u, v) | ∀τ1, τ2,R ⊆ τ1 × τ2. (uτ1 , vτ2) ∈ F(R)}

Then for every g :: τ , the pair (g, g) is contained in the relational
interpretation of τ .

9

Deriving Free Theorems, in General

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {((x1, x2), (y1, y2)) | (x1, y1) ∈ R, (x2, y2) ∈ S}

[R] = {([x1, . . . , xn], [y1, . . . , yn]) | n ≥ 0, (xi , yi) ∈ R}
R → S = {(f1, f2) | ∀(a1, a2) ∈ R. (f1 a1, f2 a2) ∈ S}
∀R.F(R) = {(u, v) | ∀τ1, τ2,R ⊆ τ1 × τ2. (uτ1 , vτ2) ∈ F(R)}

Then for every g :: τ , the pair (g, g) is contained in the relational
interpretation of τ .

9

Deriving Free Theorems, in General

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {((x1, x2), (y1, y2)) | (x1, y1) ∈ R, (x2, y2) ∈ S}
[R] = {([x1, . . . , xn], [y1, . . . , yn]) | n ≥ 0, (xi , yi) ∈ R}

R → S = {(f1, f2) | ∀(a1, a2) ∈ R. (f1 a1, f2 a2) ∈ S}
∀R.F(R) = {(u, v) | ∀τ1, τ2,R ⊆ τ1 × τ2. (uτ1 , vτ2) ∈ F(R)}

Then for every g :: τ , the pair (g, g) is contained in the relational
interpretation of τ .

9

Deriving Free Theorems, in General

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {((x1, x2), (y1, y2)) | (x1, y1) ∈ R, (x2, y2) ∈ S}
[R] = {([x1, . . . , xn], [y1, . . . , yn]) | n ≥ 0, (xi , yi) ∈ R}
R → S = {(f1, f2) | ∀(a1, a2) ∈ R. (f1 a1, f2 a2) ∈ S}

∀R.F(R) = {(u, v) | ∀τ1, τ2,R ⊆ τ1 × τ2. (uτ1 , vτ2) ∈ F(R)}

Then for every g :: τ , the pair (g, g) is contained in the relational
interpretation of τ .

9

Deriving Free Theorems, in General

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {((x1, x2), (y1, y2)) | (x1, y1) ∈ R, (x2, y2) ∈ S}
[R] = {([x1, . . . , xn], [y1, . . . , yn]) | n ≥ 0, (xi , yi) ∈ R}
R → S = {(f1, f2) | ∀(a1, a2) ∈ R. (f1 a1, f2 a2) ∈ S}
∀R.F(R) = {(u, v) | ∀τ1, τ2,R ⊆ τ1 × τ2. (uτ1 , vτ2) ∈ F(R)}

Then for every g :: τ , the pair (g, g) is contained in the relational
interpretation of τ .

9

Deriving Free Theorems, in General

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {((x1, x2), (y1, y2)) | (x1, y1) ∈ R, (x2, y2) ∈ S}
[R] = {([x1, . . . , xn], [y1, . . . , yn]) | n ≥ 0, (xi , yi) ∈ R}
R → S = {(f1, f2) | ∀(a1, a2) ∈ R. (f1 a1, f2 a2) ∈ S}
∀R.F(R) = {(u, v) | ∀τ1, τ2,R ⊆ τ1 × τ2. (uτ1 , vτ2) ∈ F(R)}

Then for every g :: τ , the pair (g, g) is contained in the relational
interpretation of τ .

9

Now Formal Counterpart to Intuitive Reasoning

Let g :: (α→ Bool)→ ([α]→ [α]).

Then:

(g, g) ∈∀R.(R → idBool)→ ([R]→ [R])

⇔ ∀τ1, τ2,R ⊆ τ1 × τ2. (gτ1 , gτ2) ∈(R → idBool)→ ([R]→ [R])
⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). (gτ1 a1, gτ2 a2) ∈([R]→ [R])
⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). ∀(l1, l2) ∈ [R].

(gτ1 a1 l1, gτ2 a2 l2) ∈ [R]
⇒ ∀(a1, a2) ∈ (f → idBool). ∀(l1, l2) ∈ (map f).

(gτ1 a1 l1, gτ2 a2 l2) ∈ (map f)
⇒ ∀(l1, l2) ∈ (map f). (gτ1 (p ◦ f) l1, gτ2 p l2) ∈ (map f)
⇔ ∀l1 :: [τ1]. map f (gτ1 (p ◦ f) l1) = gτ2 p (map f l1)

for every function f :: τ1 → τ2 and predicate p :: τ2 → Bool.

That is what was claimed!

10

Now Formal Counterpart to Intuitive Reasoning

Let g :: (α→ Bool)→ ([α]→ [α]).
Then:

(g, g) ∈∀R.(R → idBool)→ ([R]→ [R])

⇔ ∀τ1, τ2,R ⊆ τ1 × τ2. (gτ1 , gτ2) ∈(R → idBool)→ ([R]→ [R])
⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). (gτ1 a1, gτ2 a2) ∈([R]→ [R])
⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). ∀(l1, l2) ∈ [R].

(gτ1 a1 l1, gτ2 a2 l2) ∈ [R]
⇒ ∀(a1, a2) ∈ (f → idBool). ∀(l1, l2) ∈ (map f).

(gτ1 a1 l1, gτ2 a2 l2) ∈ (map f)
⇒ ∀(l1, l2) ∈ (map f). (gτ1 (p ◦ f) l1, gτ2 p l2) ∈ (map f)
⇔ ∀l1 :: [τ1]. map f (gτ1 (p ◦ f) l1) = gτ2 p (map f l1)

for every function f :: τ1 → τ2 and predicate p :: τ2 → Bool.

That is what was claimed!

10

Now Formal Counterpart to Intuitive Reasoning

Let g :: (α→ Bool)→ ([α]→ [α]).
Then:

(g, g) ∈∀R.(R → idBool)→ ([R]→ [R])
⇔ ∀τ1, τ2,R ⊆ τ1 × τ2. (gτ1 , gτ2) ∈(R → idBool)→ ([R]→ [R])

by definition of ∀R.F(R)

⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). (gτ1 a1, gτ2 a2) ∈([R]→ [R])
⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). ∀(l1, l2) ∈ [R].

(gτ1 a1 l1, gτ2 a2 l2) ∈ [R]
⇒ ∀(a1, a2) ∈ (f → idBool). ∀(l1, l2) ∈ (map f).

(gτ1 a1 l1, gτ2 a2 l2) ∈ (map f)
⇒ ∀(l1, l2) ∈ (map f). (gτ1 (p ◦ f) l1, gτ2 p l2) ∈ (map f)
⇔ ∀l1 :: [τ1]. map f (gτ1 (p ◦ f) l1) = gτ2 p (map f l1)

for every function f :: τ1 → τ2 and predicate p :: τ2 → Bool.

That is what was claimed!

10

Now Formal Counterpart to Intuitive Reasoning

Let g :: (α→ Bool)→ ([α]→ [α]).
Then:

(g, g) ∈∀R.(R → idBool)→ ([R]→ [R])
⇔ ∀τ1, τ2,R ⊆ τ1 × τ2. (gτ1 , gτ2) ∈(R → idBool)→ ([R]→ [R])
⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). (gτ1 a1, gτ2 a2) ∈([R]→ [R])

by definition of R → S

⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). ∀(l1, l2) ∈ [R].
(gτ1 a1 l1, gτ2 a2 l2) ∈ [R]

⇒ ∀(a1, a2) ∈ (f → idBool). ∀(l1, l2) ∈ (map f).
(gτ1 a1 l1, gτ2 a2 l2) ∈ (map f)

⇒ ∀(l1, l2) ∈ (map f). (gτ1 (p ◦ f) l1, gτ2 p l2) ∈ (map f)
⇔ ∀l1 :: [τ1]. map f (gτ1 (p ◦ f) l1) = gτ2 p (map f l1)

for every function f :: τ1 → τ2 and predicate p :: τ2 → Bool.

That is what was claimed!

10

Now Formal Counterpart to Intuitive Reasoning

Let g :: (α→ Bool)→ ([α]→ [α]).
Then:

(g, g) ∈∀R.(R → idBool)→ ([R]→ [R])
⇔ ∀τ1, τ2,R ⊆ τ1 × τ2. (gτ1 , gτ2) ∈(R → idBool)→ ([R]→ [R])
⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). (gτ1 a1, gτ2 a2) ∈([R]→ [R])
⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). ∀(l1, l2) ∈ [R].

(gτ1 a1 l1, gτ2 a2 l2) ∈ [R]
by definition of R → S

⇒ ∀(a1, a2) ∈ (f → idBool). ∀(l1, l2) ∈ (map f).
(gτ1 a1 l1, gτ2 a2 l2) ∈ (map f)

⇒ ∀(l1, l2) ∈ (map f). (gτ1 (p ◦ f) l1, gτ2 p l2) ∈ (map f)
⇔ ∀l1 :: [τ1]. map f (gτ1 (p ◦ f) l1) = gτ2 p (map f l1)

for every function f :: τ1 → τ2 and predicate p :: τ2 → Bool.

That is what was claimed!

10

Now Formal Counterpart to Intuitive Reasoning

Let g :: (α→ Bool)→ ([α]→ [α]).
Then:

(g, g) ∈∀R.(R → idBool)→ ([R]→ [R])
⇔ ∀τ1, τ2,R ⊆ τ1 × τ2. (gτ1 , gτ2) ∈(R → idBool)→ ([R]→ [R])
⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). (gτ1 a1, gτ2 a2) ∈([R]→ [R])
⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). ∀(l1, l2) ∈ [R].

(gτ1 a1 l1, gτ2 a2 l2) ∈ [R]
⇒ ∀(a1, a2) ∈ (f → idBool). ∀(l1, l2) ∈ (map f).

(gτ1 a1 l1, gτ2 a2 l2) ∈ (map f)
by instantiating R = f and realising that then [R] = (map f)

⇒ ∀(l1, l2) ∈ (map f). (gτ1 (p ◦ f) l1, gτ2 p l2) ∈ (map f)
⇔ ∀l1 :: [τ1]. map f (gτ1 (p ◦ f) l1) = gτ2 p (map f l1)

for every function f :: τ1 → τ2

and predicate p :: τ2 → Bool.

That is what was claimed!

10

Now Formal Counterpart to Intuitive Reasoning

Let g :: (α→ Bool)→ ([α]→ [α]).
Then:

(g, g) ∈∀R.(R → idBool)→ ([R]→ [R])
⇔ ∀τ1, τ2,R ⊆ τ1 × τ2. (gτ1 , gτ2) ∈(R → idBool)→ ([R]→ [R])
⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). (gτ1 a1, gτ2 a2) ∈([R]→ [R])
⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). ∀(l1, l2) ∈ [R].

(gτ1 a1 l1, gτ2 a2 l2) ∈ [R]
⇒ ∀(a1, a2) ∈ (f → idBool). ∀(l1, l2) ∈ (map f).

(gτ1 a1 l1, gτ2 a2 l2) ∈ (map f)
⇒ ∀(l1, l2) ∈ (map f). (gτ1 (p ◦ f) l1, gτ2 p l2) ∈ (map f)

by instantiating (a1, a2) = (p ◦ f , p) ∈ (f → idBool)

⇔ ∀l1 :: [τ1]. map f (gτ1 (p ◦ f) l1) = gτ2 p (map f l1)

for every function f :: τ1 → τ2 and predicate p :: τ2 → Bool.

That is what was claimed!

10

Now Formal Counterpart to Intuitive Reasoning

Let g :: (α→ Bool)→ ([α]→ [α]).
Then:

(g, g) ∈∀R.(R → idBool)→ ([R]→ [R])
⇔ ∀τ1, τ2,R ⊆ τ1 × τ2. (gτ1 , gτ2) ∈(R → idBool)→ ([R]→ [R])
⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). (gτ1 a1, gτ2 a2) ∈([R]→ [R])
⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). ∀(l1, l2) ∈ [R].

(gτ1 a1 l1, gτ2 a2 l2) ∈ [R]
⇒ ∀(a1, a2) ∈ (f → idBool). ∀(l1, l2) ∈ (map f).

(gτ1 a1 l1, gτ2 a2 l2) ∈ (map f)
⇒ ∀(l1, l2) ∈ (map f). (gτ1 (p ◦ f) l1, gτ2 p l2) ∈ (map f)
⇔ ∀l1 :: [τ1]. map f (gτ1 (p ◦ f) l1) = gτ2 p (map f l1)

by inlining

for every function f :: τ1 → τ2 and predicate p :: τ2 → Bool.

That is what was claimed!

10

Now Formal Counterpart to Intuitive Reasoning

Let g :: (α→ Bool)→ ([α]→ [α]).
Then:

(g, g) ∈∀R.(R → idBool)→ ([R]→ [R])
⇔ ∀τ1, τ2,R ⊆ τ1 × τ2. (gτ1 , gτ2) ∈(R → idBool)→ ([R]→ [R])
⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). (gτ1 a1, gτ2 a2) ∈([R]→ [R])
⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). ∀(l1, l2) ∈ [R].

(gτ1 a1 l1, gτ2 a2 l2) ∈ [R]
⇒ ∀(a1, a2) ∈ (f → idBool). ∀(l1, l2) ∈ (map f).

(gτ1 a1 l1, gτ2 a2 l2) ∈ (map f)
⇒ ∀(l1, l2) ∈ (map f). (gτ1 (p ◦ f) l1, gτ2 p l2) ∈ (map f)
⇔ ∀l1 :: [τ1]. map f (gτ1 (p ◦ f) l1) = gτ2 p (map f l1)

for every function f :: τ1 → τ2 and predicate p :: τ2 → Bool.

That is what was claimed!

10

Deriving Free Theorems, in General

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {((x1, x2), (y1, y2)) | (x1, y1) ∈ R, (x2, y2) ∈ S}
[R] = {([x1, . . . , xn], [y1, . . . , yn]) | n ≥ 0, (xi , yi) ∈ R}
R → S = {(f1, f2) | ∀(a1, a2) ∈ R. (f1 a1, f2 a2) ∈ S}
∀R.F(R) = {(u, v) | ∀τ1, τ2,R ⊆ τ1 × τ2. (uτ1 , vτ2) ∈ F(R)}

Then for every g :: τ , the pair (g, g) is contained in the relational
interpretation of τ .

11

The Polymorphic λ-Calculus [Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ

| Bool | [τ]

Terms: t := x | λx : τ.t | t t | Λα.t | t τ

|
True | False | []τ | t : t | case t of {· · · }

Γ, x : τ ` x : τ
Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1.t) : τ1 → τ2

Γ ` t : τ1 → τ2 Γ ` u : τ1
Γ ` (t u) : τ2

α, Γ ` t : τ

Γ ` (Λα.t) : ∀α.τ

Γ ` t : ∀α.τ
Γ ` (t τ ′) : τ [τ ′/α]

Γ ` t : τ Γ ` u : [τ]

Γ ` (t : u) : [τ]

Γ ` True : Bool , Γ ` False : Bool , Γ ` []τ : [τ]

Γ ` t : Bool Γ ` u : τ Γ ` v : τ
Γ ` (case t of {True→ u ; False→ v}) : τ

Γ ` t : [τ ′] Γ ` u : τ Γ, x1 : τ ′, x2 : [τ ′] ` v : τ

Γ ` (case t of {[]→ u ; (x1 : x2)→ v}) : τ

12

The Polymorphic λ-Calculus [Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ

| Bool | [τ]

Terms: t := x | λx : τ.t | t t | Λα.t | t τ

|
True | False | []τ | t : t | case t of {· · · }

Γ, x : τ ` x : τ

Γ, x : τ1 ` t : τ2
Γ ` (λx : τ1.t) : τ1 → τ2

Γ ` t : τ1 → τ2 Γ ` u : τ1
Γ ` (t u) : τ2

α, Γ ` t : τ

Γ ` (Λα.t) : ∀α.τ

Γ ` t : ∀α.τ
Γ ` (t τ ′) : τ [τ ′/α]

Γ ` t : τ Γ ` u : [τ]

Γ ` (t : u) : [τ]

Γ ` True : Bool , Γ ` False : Bool , Γ ` []τ : [τ]

Γ ` t : Bool Γ ` u : τ Γ ` v : τ
Γ ` (case t of {True→ u ; False→ v}) : τ

Γ ` t : [τ ′] Γ ` u : τ Γ, x1 : τ ′, x2 : [τ ′] ` v : τ

Γ ` (case t of {[]→ u ; (x1 : x2)→ v}) : τ

12

The Polymorphic λ-Calculus [Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ

| Bool | [τ]

Terms: t := x | λx : τ.t | t t | Λα.t | t τ

|
True | False | []τ | t : t | case t of {· · · }

Γ, x : τ ` x : τ
Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1.t) : τ1 → τ2

Γ ` t : τ1 → τ2 Γ ` u : τ1
Γ ` (t u) : τ2

α, Γ ` t : τ

Γ ` (Λα.t) : ∀α.τ

Γ ` t : ∀α.τ
Γ ` (t τ ′) : τ [τ ′/α]

Γ ` t : τ Γ ` u : [τ]

Γ ` (t : u) : [τ]

Γ ` True : Bool , Γ ` False : Bool , Γ ` []τ : [τ]

Γ ` t : Bool Γ ` u : τ Γ ` v : τ
Γ ` (case t of {True→ u ; False→ v}) : τ

Γ ` t : [τ ′] Γ ` u : τ Γ, x1 : τ ′, x2 : [τ ′] ` v : τ

Γ ` (case t of {[]→ u ; (x1 : x2)→ v}) : τ

12

The Polymorphic λ-Calculus [Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ

| Bool | [τ]

Terms: t := x | λx : τ.t | t t | Λα.t | t τ

|
True | False | []τ | t : t | case t of {· · · }

Γ, x : τ ` x : τ
Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1.t) : τ1 → τ2

Γ ` t : τ1 → τ2 Γ ` u : τ1
Γ ` (t u) : τ2

α, Γ ` t : τ

Γ ` (Λα.t) : ∀α.τ

Γ ` t : ∀α.τ
Γ ` (t τ ′) : τ [τ ′/α]

Γ ` t : τ Γ ` u : [τ]

Γ ` (t : u) : [τ]

Γ ` True : Bool , Γ ` False : Bool , Γ ` []τ : [τ]

Γ ` t : Bool Γ ` u : τ Γ ` v : τ
Γ ` (case t of {True→ u ; False→ v}) : τ

Γ ` t : [τ ′] Γ ` u : τ Γ, x1 : τ ′, x2 : [τ ′] ` v : τ

Γ ` (case t of {[]→ u ; (x1 : x2)→ v}) : τ

12

The Polymorphic λ-Calculus [Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ

| Bool | [τ]

Terms: t := x | λx : τ.t | t t | Λα.t | t τ

|
True | False | []τ | t : t | case t of {· · · }

Γ, x : τ ` x : τ
Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1.t) : τ1 → τ2

Γ ` t : τ1 → τ2 Γ ` u : τ1
Γ ` (t u) : τ2

α, Γ ` t : τ

Γ ` (Λα.t) : ∀α.τ

Γ ` t : ∀α.τ
Γ ` (t τ ′) : τ [τ ′/α]

Γ ` t : τ Γ ` u : [τ]

Γ ` (t : u) : [τ]

Γ ` True : Bool , Γ ` False : Bool , Γ ` []τ : [τ]

Γ ` t : Bool Γ ` u : τ Γ ` v : τ
Γ ` (case t of {True→ u ; False→ v}) : τ

Γ ` t : [τ ′] Γ ` u : τ Γ, x1 : τ ′, x2 : [τ ′] ` v : τ

Γ ` (case t of {[]→ u ; (x1 : x2)→ v}) : τ

12

The Polymorphic λ-Calculus [Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ

| Bool | [τ]

Terms: t := x | λx : τ.t | t t | Λα.t | t τ

|
True | False | []τ | t : t | case t of {· · · }

Γ, x : τ ` x : τ
Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1.t) : τ1 → τ2

Γ ` t : τ1 → τ2 Γ ` u : τ1
Γ ` (t u) : τ2

α, Γ ` t : τ

Γ ` (Λα.t) : ∀α.τ

Γ ` t : ∀α.τ
Γ ` (t τ ′) : τ [τ ′/α]

Γ ` t : τ Γ ` u : [τ]

Γ ` (t : u) : [τ]

Γ ` True : Bool , Γ ` False : Bool , Γ ` []τ : [τ]

Γ ` t : Bool Γ ` u : τ Γ ` v : τ
Γ ` (case t of {True→ u ; False→ v}) : τ

Γ ` t : [τ ′] Γ ` u : τ Γ, x1 : τ ′, x2 : [τ ′] ` v : τ

Γ ` (case t of {[]→ u ; (x1 : x2)→ v}) : τ

12

The Polymorphic λ-Calculus [Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ | Bool | [τ]
Terms: t := x | λx : τ.t | t t | Λα.t | t τ

|
True | False | []τ | t : t | case t of {· · · }

Γ, x : τ ` x : τ
Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1.t) : τ1 → τ2

Γ ` t : τ1 → τ2 Γ ` u : τ1
Γ ` (t u) : τ2

α, Γ ` t : τ

Γ ` (Λα.t) : ∀α.τ

Γ ` t : ∀α.τ
Γ ` (t τ ′) : τ [τ ′/α]

Γ ` t : τ Γ ` u : [τ]

Γ ` (t : u) : [τ]

Γ ` True : Bool , Γ ` False : Bool , Γ ` []τ : [τ]

Γ ` t : Bool Γ ` u : τ Γ ` v : τ
Γ ` (case t of {True→ u ; False→ v}) : τ

Γ ` t : [τ ′] Γ ` u : τ Γ, x1 : τ ′, x2 : [τ ′] ` v : τ

Γ ` (case t of {[]→ u ; (x1 : x2)→ v}) : τ

12

The Polymorphic λ-Calculus [Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ | Bool | [τ]
Terms: t := x | λx : τ.t | t t | Λα.t | t τ |

True | False | []τ | t : t | case t of {· · · }

Γ, x : τ ` x : τ
Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1.t) : τ1 → τ2

Γ ` t : τ1 → τ2 Γ ` u : τ1
Γ ` (t u) : τ2

α, Γ ` t : τ

Γ ` (Λα.t) : ∀α.τ

Γ ` t : ∀α.τ
Γ ` (t τ ′) : τ [τ ′/α]

Γ ` t : τ Γ ` u : [τ]

Γ ` (t : u) : [τ]

Γ ` True : Bool , Γ ` False : Bool , Γ ` []τ : [τ]

Γ ` t : Bool Γ ` u : τ Γ ` v : τ
Γ ` (case t of {True→ u ; False→ v}) : τ

Γ ` t : [τ ′] Γ ` u : τ Γ, x1 : τ ′, x2 : [τ ′] ` v : τ

Γ ` (case t of {[]→ u ; (x1 : x2)→ v}) : τ

12

The Polymorphic λ-Calculus [Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ | Bool | [τ]
Terms: t := x | λx : τ.t | t t | Λα.t | t τ |

True | False | []τ | t : t | case t of {· · · }

Γ, x : τ ` x : τ
Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1.t) : τ1 → τ2

Γ ` t : τ1 → τ2 Γ ` u : τ1
Γ ` (t u) : τ2

α, Γ ` t : τ

Γ ` (Λα.t) : ∀α.τ

Γ ` t : ∀α.τ
Γ ` (t τ ′) : τ [τ ′/α]

Γ ` t : τ Γ ` u : [τ]

Γ ` (t : u) : [τ]

Γ ` True : Bool , Γ ` False : Bool , Γ ` []τ : [τ]

Γ ` t : Bool Γ ` u : τ Γ ` v : τ
Γ ` (case t of {True→ u ; False→ v}) : τ

Γ ` t : [τ ′] Γ ` u : τ Γ, x1 : τ ′, x2 : [τ ′] ` v : τ

Γ ` (case t of {[]→ u ; (x1 : x2)→ v}) : τ
12

Deriving Free Theorems, in General

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {((x1, x2), (y1, y2)) | (x1, y1) ∈ R, (x2, y2) ∈ S}
[R] = {([x1, . . . , xn], [y1, . . . , yn]) | n ≥ 0, (xi , yi) ∈ R}
R → S = {(f1, f2) | ∀(a1, a2) ∈ R. (f1 a1, f2 a2) ∈ S}
∀R.F(R) = {(u, v) | ∀τ1, τ2,R ⊆ τ1 × τ2. (uτ1 , vτ2) ∈ F(R)}

Then for every g :: τ , the pair (g, g) is contained in the relational
interpretation of τ .

13

General Recursion

We had that for every

g :: (α→ Bool)→ [α]→ [α]

it holds
g p (map f l) = map f (g (p ◦ f) l)

for every choice of p, f , and l .

What about
g :: (α→ Bool)→ [α]→ [α]
g p l = [head (g p l)] ?

The above free theorem fails!

Consider, e.g., p = id, f = const True, and l = [].

14

General Recursion

We had that for every

g :: (α→ Bool)→ [α]→ [α]

it holds
g p (map f l) = map f (g (p ◦ f) l)

for every choice of p, f , and l .

What about
g :: (α→ Bool)→ [α]→ [α]
g p l = [head (g p l)] ?

The above free theorem fails!

Consider, e.g., p = id, f = const True, and l = [].

14

General Recursion

We had that for every

g :: (α→ Bool)→ [α]→ [α]

it holds
g p (map f l) = map f (g (p ◦ f) l)

for every choice of p, f , and l .

What about
g :: (α→ Bool)→ [α]→ [α]
g p l = [head (g p l)] ?

The above free theorem fails!

Consider, e.g., p = id, f = const True, and l = [].

14

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map f l) and l always have equal length.

I Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

I g p (map f l) is equivalent to map f (g (p ◦ f) l).

I That is what was claimed!

15

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

I The lists (map f l) and l always have equal length.
I Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

I g p (map f l) is equivalent to map f (g (p ◦ f) l),
if f is strict.

I This gives a revised free theorem.

16

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

I The lists (map f l) and l always have equal length.
I Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

I g p (map f l) is equivalent to map f (g (p ◦ f) l),
if f is strict.

I This gives a revised free theorem.

16

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

I The lists (map f l) and l always have equal length.
I Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

I g p (map f l) is equivalent to map f (g (p ◦ f) l),
if f is strict.

I This gives a revised free theorem.

16

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

I The lists (map f l) and l always have equal length.
I Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

I g p (map f l) is equivalent to map f (g (p ◦ f) l),
if f is strict.

I This gives a revised free theorem.

16

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

I The lists (map f l) and l always have equal length.
I Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

I g p (map f l) is equivalent to map f (g (p ◦ f) l),
if f is strict.

I This gives a revised free theorem.

16

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

I The lists (map f l) and l always have equal length.
I Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

I g p (map f l) is equivalent to map f (g (p ◦ f) l),
if f is strict.

I This gives a revised free theorem.

16

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

I The lists (map f l) and l always have equal length.

I Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

I g p (map f l) is equivalent to map f (g (p ◦ f) l),
if f is strict.

I This gives a revised free theorem.

16

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

I The lists (map f l) and l always have equal length.
I Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

I g p (map f l) is equivalent to map f (g (p ◦ f) l),
if f is strict.

I This gives a revised free theorem.

16

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

I The lists (map f l) and l always have equal length.
I Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

I g p (map f l) is equivalent to map f (g (p ◦ f) l),
if f is strict.

I This gives a revised free theorem.

16

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

I The lists (map f l) and l always have equal length.
I Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l ,

except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

I g p (map f l) is equivalent to map f (g (p ◦ f) l),
if f is strict.

I This gives a revised free theorem.

16

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

I The lists (map f l) and l always have equal length.
I Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

I g p (map f l) is equivalent to map f (g (p ◦ f) l),
if f is strict.

I This gives a revised free theorem.

16

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

I The lists (map f l) and l always have equal length.
I Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

I g p (map f l) is equivalent to map f (g (p ◦ f) l),
if f is strict.

I This gives a revised free theorem.

16

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

 Not true! Also possible: ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

I The lists (map f l) and l always have equal length.
I Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

I g p (map f l) is equivalent to map f (g (p ◦ f) l),

if f is strict.
I This gives a revised free theorem.

16

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

I The lists (map f l) and l always have equal length.
I Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

I g p (map f l) is equivalent to map f (g (p ◦ f) l),
if f is strict.

I This gives a revised free theorem.

16

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

I The lists (map f l) and l always have equal length.
I Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

I g p (map f l) is equivalent to map f (g (p ◦ f) l),
if f is strict.

I This gives a revised free theorem.

16

Why g p (map f l) = map f (g (p ◦ f) l), Intuitively

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

 Not true! Also possible: checking outcome of p on ⊥.

I The lists (map f l) and l always have equal length.
I Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f) to ⊥,
provided f is strict (f ⊥ = ⊥).

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

I g p (map f l) is equivalent to map f (g (p ◦ f) l),
if f is strict.

I This gives a revised free theorem.

16

The Polymorphic λ-Calculus [Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ | Bool | [τ]
Terms: t := x | λx : τ.t | t t | Λα.t | t τ |

True | False | []τ | t : t | case t of {· · · }

Γ, x : τ ` x : τ
Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1.t) : τ1 → τ2

Γ ` t : τ1 → τ2 Γ ` u : τ1
Γ ` (t u) : τ2

α, Γ ` t : τ

Γ ` (Λα.t) : ∀α.τ

Γ ` t : ∀α.τ
Γ ` (t τ ′) : τ [τ ′/α]

Γ ` t : τ Γ ` u : [τ]

Γ ` (t : u) : [τ]

Γ ` True : Bool , Γ ` False : Bool , Γ ` []τ : [τ]

Γ ` t : Bool Γ ` u : τ Γ ` v : τ
Γ ` (case t of {True→ u ; False→ v}) : τ

Γ ` t : [τ ′] Γ ` u : τ Γ, x1 : τ ′, x2 : [τ ′] ` v : τ

Γ ` (case t of {[]→ u ; (x1 : x2)→ v}) : τ
17

Adding General Recursion

Terms: t := · · · | fix t

Γ ` t : τ → τ
Γ ` (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders, and:

fix t =
⊔
i≥0

(t i ⊥)

And what about free theorems?

Let us check the one for, essentially, fix :: (α→ α)→ α, namely:

∀τ1, τ2,R ⊆ τ1 × τ2.∀t1 :: τ1 → τ1, t2 :: τ2 → τ2.

(∀(a1, a2) ∈ R. (t1 a1, t2 a2) ∈ R)
⇒ (

⊔
i≥0(t i1 ⊥),

⊔
i≥0(t i2 ⊥)) ∈ R

We can guarantee the above, provided all relations are restricted to
be strict and continuous.

18

Adding General Recursion

Terms: t := · · · | fix t

Γ ` t : τ → τ
Γ ` (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders, and:

fix t =
⊔
i≥0

(t i ⊥)

And what about free theorems?

Let us check the one for, essentially, fix :: (α→ α)→ α, namely:

∀τ1, τ2,R ⊆ τ1 × τ2.∀t1 :: τ1 → τ1, t2 :: τ2 → τ2.

(∀(a1, a2) ∈ R. (t1 a1, t2 a2) ∈ R)
⇒ (

⊔
i≥0(t i1 ⊥),

⊔
i≥0(t i2 ⊥)) ∈ R

We can guarantee the above, provided all relations are restricted to
be strict and continuous.

18

Adding General Recursion

Terms: t := · · · | fix t

Γ ` t : τ → τ
Γ ` (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders, and:

fix t =
⊔
i≥0

(t i ⊥)

And what about free theorems?

Let us check the one for, essentially, fix :: (α→ α)→ α, namely:

∀τ1, τ2,R ⊆ τ1 × τ2.∀t1 :: τ1 → τ1, t2 :: τ2 → τ2.

(∀(a1, a2) ∈ R. (t1 a1, t2 a2) ∈ R)
⇒ (

⊔
i≥0(t i1 ⊥),

⊔
i≥0(t i2 ⊥)) ∈ R

We can guarantee the above, provided all relations are restricted to
be strict and continuous.

18

Use in an Example

The function

filter :: (α→ Bool)→ [α]→ [α]
filter p [] = []
filter p (a : as) = if p a then a : (filter p as)

else filter p as

has a “desugaring” in the (extended) calculus as follows:

fix (λf : (∀α.(α→ Bool)→ [α]→ [α]).
Λα.λp : (α→ Bool).λl : [α].
case l of {[] → []α ;

(a : as)→ case p a of
{True → a : (f α p as) ;

False→ f α p as}})

19

Adding General Recursion

Terms: t := · · · | fix t

Γ ` t : τ → τ
Γ ` (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders, and:

fix t =
⊔
i≥0

(t i ⊥)

And what about free theorems?

Let us check the one for, essentially, fix :: (α→ α)→ α, namely:

∀τ1, τ2,R ⊆ τ1 × τ2.∀t1 :: τ1 → τ1, t2 :: τ2 → τ2.

(∀(a1, a2) ∈ R. (t1 a1, t2 a2) ∈ R)
⇒ (

⊔
i≥0(t i1 ⊥),

⊔
i≥0(t i2 ⊥)) ∈ R

We can guarantee the above, provided all relations are restricted to
be strict and continuous.

20

Adding General Recursion

Terms: t := · · · | fix t

Γ ` t : τ → τ
Γ ` (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders, and:

fix t =
⊔
i≥0

(t i ⊥)

And what about free theorems?

Let us check the one for, essentially, fix :: (α→ α)→ α, namely:

∀τ1, τ2,R ⊆ τ1 × τ2.∀t1 :: τ1 → τ1, t2 :: τ2 → τ2.

(∀(a1, a2) ∈ R. (t1 a1, t2 a2) ∈ R)
⇒ (fix t1,fix t2) ∈ R

We can guarantee the above, provided all relations are restricted to
be strict and continuous.

20

Adding General Recursion

Terms: t := · · · | fix t

Γ ` t : τ → τ
Γ ` (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders, and:

fix t =
⊔
i≥0

(t i ⊥)

And what about free theorems?

Let us check the one for, essentially, fix :: (α→ α)→ α, namely:

∀τ1, τ2,R ⊆ τ1 × τ2.∀t1 :: τ1 → τ1, t2 :: τ2 → τ2.

(∀(a1, a2) ∈ R. (t1 a1, t2 a2) ∈ R)
⇒ (

⊔
i≥0(t i1 ⊥),

⊔
i≥0(t i2 ⊥)) ∈ R

We can guarantee the above, provided all relations are restricted to
be strict and continuous.

20

Adding General Recursion

To provide semantics, types are interpreted as pointed complete
partial orders, and:

fix t =
⊔
i≥0

(t i ⊥)

And what about free theorems?

Let us check the one for, essentially, fix :: (α→ α)→ α, namely:

∀τ1, τ2,R ⊆ τ1 × τ2.∀t1 :: τ1 → τ1, t2 :: τ2 → τ2.

(∀(a1, a2) ∈ R. (t1 a1, t2 a2) ∈ R)
⇒ (

⊔
i≥0(t i1 ⊥),

⊔
i≥0(t i2 ⊥)) ∈ R

We can guarantee the above, provided all relations are restricted to
be strict and continuous.

20

Adding General Recursion

To provide semantics, types are interpreted as pointed complete
partial orders, and:

fix t =
⊔
i≥0

(t i ⊥)

And what about free theorems?

Let us check the one for, essentially, fix :: (α→ α)→ α, namely:

∀τ1, τ2,R ⊆ τ1 × τ2.∀t1 :: τ1 → τ1, t2 :: τ2 → τ2.

(∀(a1, a2) ∈ R. (t1 a1, t2 a2) ∈ R)
⇒ (

⊔
i≥0(t i1 ⊥),

⊔
i≥0(t i2 ⊥)) ∈ R

We can guarantee the above, provided all relations are restricted to
be strict and continuous.

20

Deriving Free Theorems in Presence of General Recursion

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | · · · }
[R] = {(⊥,⊥)} ∪ {([x1, . . . , xn], [y1, . . . , yn]) | · · · }
R → S = {(f1, f2) | ∀(a1, a2) ∈ R. (f1 a1, f2 a2) ∈ S}
∀R.F(R) = {(u, v) | ∀τ1, τ2,R strict and continuous. · · · }

Then for every g :: τ , the pair (g, g) is contained in the (adapted)
relational interpretation of τ .

21

Deriving Free Theorems in Presence of General Recursion

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | · · · }
[R] = {(⊥,⊥)} ∪ {([x1, . . . , xn], [y1, . . . , yn]) | · · · }
R → S = {(f1, f2) | ∀(a1, a2) ∈ R. (f1 a1, f2 a2) ∈ S}
∀R.F(R) = {(u, v) | ∀τ1, τ2,R strict and continuous. · · · }

Then for every g :: τ , the pair (g, g) is contained in the (adapted)
relational interpretation of τ .

21

Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/~voigt/ft:

22

http://linux.tcs.inf.tu-dresden.de/~voigt/ft

Adding Selective Strictness

Terms: t := · · · | seq t t

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

23

Adding Selective Strictness

Terms: t := · · · | seq t t

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

23

Adding Selective Strictness

Terms: t := · · · | seq t t

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

23

Adding Selective Strictness

Terms: t := · · · | seq t t

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

23

Adding Selective Strictness

Terms: t := · · · | seq t t

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

There are counterexamples, again.

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

23

Without seq, g p (map f l) = map f (g (p ◦ f) l)

I g :: (α→ Bool)→ [α]→ [α] must work uniformly.
I The output list can only contain elements from the input list l

and ⊥.
I Which, and in which order/multiplicity, can only be decided

based on l and the input predicate p.
I The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements and on ⊥.
I The lists (map f l) and l always have equal length.
I Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f) to the corresponding element of l .
I Applying p to ⊥ has the same outcome as applying (p ◦ f),

provided f is strict.
I g with p always chooses “the same” elements from (map f l)

for output as does g with (p ◦ f) from l , except that in the
former case it outputs their images under f , and that they
may also choose, at the same positions, to output ⊥.

I g p (map f l) = map f (g (p ◦ f) l), if f is strict.
24

With seq, g p (map f l) = map f (g (p ◦ f) l) ?

I g :: (α→ Bool)→ [α]→ [α] must work uniformly.

I The output list can only contain elements from the input list l
and ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements and on ⊥.

 Not true! Also possible:

I “checking” elements from l for being ⊥
I “checking” p for being ⊥

. . . ???

25

With seq, g p (map f l) = map f (g (p ◦ f) l) ?

I g :: (α→ Bool)→ [α]→ [α] must work uniformly.

I The output list can only contain elements from the input list l
and ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements and on ⊥.

 Not true! Also possible:

I “checking” elements from l for being ⊥
I “checking” p for being ⊥

. . . ???

25

With seq, g p (map f l) = map f (g (p ◦ f) l) ?

I g :: (α→ Bool)→ [α]→ [α] must work uniformly.

I The output list can only contain elements from the input list l
and ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements and on ⊥.

 Not true! Also possible:

I “checking” elements from l for being ⊥
I “checking” p for being ⊥

. . . ???

25

With seq, g p (map f l) = map f (g (p ◦ f) l) ?

I g :: (α→ Bool)→ [α]→ [α] must work uniformly.

I The output list can only contain elements from the input list l
and ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements and on ⊥.

 Not true! Also possible:

I “checking” elements from l for being ⊥
I “checking” p for being ⊥

. . . ???

25

With seq, g p (map f l) = map f (g (p ◦ f) l) ?

I g :: (α→ Bool)→ [α]→ [α] must work uniformly.

I The output list can only contain elements from the input list l
and ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements and on ⊥.

 Not true! Also possible:

I “checking” elements from l for being ⊥
I “checking” p for being ⊥

. . . ???

25

With seq, g p (map f l) = map f (g (p ◦ f) l) ?

I g :: (α→ Bool)→ [α]→ [α] must work uniformly.

I The output list can only contain elements from the input list l
and ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements and on ⊥.

 Not true! Also possible:

I “checking” elements from l for being ⊥
I “checking” p for being ⊥

. . . ???

25

Adding Selective Strictness

Terms: t := · · · | seq t t

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

26

Adding Selective Strictness

Terms: t := · · · | seq t t

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

26

Adding Selective Strictness

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

26

Adding Selective Strictness

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

Case distinction:

t1 t ′1 seq t1 t2 seq t ′1 t ′2 ∈ S
⊥ ⊥ ⊥ ⊥

X

⊥ 6⊥ ⊥ t ′2

?

6⊥ ⊥ t2 ⊥

?

6⊥ 6⊥ t2 t ′2

X

26

Adding Selective Strictness

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

Case distinction:

t1 t ′1 seq t1 t2 seq t ′1 t ′2 ∈ S
⊥ ⊥ ⊥ ⊥ X
⊥ 6⊥ ⊥ t ′2

?

6⊥ ⊥ t2 ⊥

?

6⊥ 6⊥ t2 t ′2

X

26

Adding Selective Strictness

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

Case distinction:

t1 t ′1 seq t1 t2 seq t ′1 t ′2 ∈ S
⊥ ⊥ ⊥ ⊥ X
⊥ 6⊥ ⊥ t ′2

?

6⊥ ⊥ t2 ⊥

?

6⊥ 6⊥ t2 t ′2 X

26

Adding Selective Strictness

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

Case distinction:

t1 t ′1 seq t1 t2 seq t ′1 t ′2 ∈ S
⊥ ⊥ ⊥ ⊥ X
⊥ 6⊥ ⊥ t ′2 ?
6⊥ ⊥ t2 ⊥ ?
6⊥ 6⊥ t2 t ′2 X

26

(Equational) Free Theorems in the Presence of seq
[Johann & V., POPL’04]

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | · · · }
[R] = {(⊥,⊥)} ∪ {([x1, . . . , xn], [y1, . . . , yn]) | · · · }
R → S = {(f1, f2) | (f1 = ⊥ ⇔ f2 = ⊥) ∧ · · · }
∀R.F(R) = {(u, v) | ∀τ1, τ2,R strict, continuous,

and bottom-reflecting. · · · }

Then for every g :: τ , the pair (g, g) is contained in the (adapted)
relational interpretation of τ .

27

(Equational) Free Theorems in the Presence of seq
[Johann & V., POPL’04]

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | · · · }
[R] = {(⊥,⊥)} ∪ {([x1, . . . , xn], [y1, . . . , yn]) | · · · }
R → S = {(f1, f2) | (f1 = ⊥ ⇔ f2 = ⊥) ∧ · · · }
∀R.F(R) = {(u, v) | ∀τ1, τ2,R strict, continuous,

and bottom-reflecting. · · · }

Then for every g :: τ , the pair (g, g) is contained in the (adapted)
relational interpretation of τ .

27

(Equational) Free Theorems in the Presence of seq
[Johann & V., POPL’04]

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | · · · }
[R] = {(⊥,⊥)} ∪ {([x1, . . . , xn], [y1, . . . , yn]) | · · · }
R → S = {(f1, f2) | (f1 = ⊥ ⇔ f2 = ⊥) ∧ · · · }
∀R.F(R) = {(u, v) | ∀τ1, τ2,R strict, continuous,

and bottom-reflecting. · · · }

Then for every g :: τ , the pair (g, g) is contained in the (adapted)
relational interpretation of τ .

27

Revising Free Theorems

[Wadler, FPCA’89] : for every g :: (α→ Bool)→ [α]→ [α],

g p (map f l) = map f (g (p ◦ f) l)

I if f strict.

[Johann & V., POPL’04] : in presence of seq, if additionally:

I p 6= ⊥ and

I f total (∀x 6= ⊥. f x 6= ⊥).
...

[Stenger & V., TLCA’09] : take finite failures with imprecise
error semantics into account

[Christiansen et al., PLPV’10] : functional logic programs in Curry

28

Revising Free Theorems

[Wadler, FPCA’89] : for every g :: (α→ Bool)→ [α]→ [α],

g p (map f l) = map f (g (p ◦ f) l)

I if f strict.

[Johann & V., POPL’04] : in presence of seq, if additionally:

I p 6= ⊥ and

I f total (∀x 6= ⊥. f x 6= ⊥).

...

[Stenger & V., TLCA’09] : take finite failures with imprecise
error semantics into account

[Christiansen et al., PLPV’10] : functional logic programs in Curry

28

Revising Free Theorems

[Wadler, FPCA’89] : for every g :: (α→ Bool)→ [α]→ [α],

g p (map f l) = map f (g (p ◦ f) l)

I if f strict.

[Johann & V., POPL’04] : in presence of seq, if additionally:

I p 6= ⊥ and

I f total (∀x 6= ⊥. f x 6= ⊥).
...

[Stenger & V., TLCA’09] : take finite failures with imprecise
error semantics into account

[Christiansen et al., PLPV’10] : functional logic programs in Curry

28

Revising Free Theorems

[Wadler, FPCA’89] : for every g :: (α→ Bool)→ [α]→ [α],

g p (map f l) = map f (g (p ◦ f) l)

I if f strict.

[Johann & V., POPL’04] : in presence of seq, if additionally:

I p 6= ⊥ and

I f total (∀x 6= ⊥. f x 6= ⊥).
...

[Stenger & V., TLCA’09] : take finite failures with imprecise
error semantics into account

[Christiansen et al., PLPV’10] : functional logic programs in Curry

28

Necessity of Certain Restrictions?

We have, with fix:

g p (map f l) = map f (g (p ◦ f) l)

for every g :: (α→ Bool)→ [α]→ [α], if

I f strict.

We have, with fix and seq: . . . , if

I p 6= ⊥,

I f strict, and

I f total.

We have, with . . . , if . . .

Natural questions in each case:

1. Are the conditions necessary for every g ?

2. Are they for any g ?

29

Necessity of Certain Restrictions?

We have, with fix:

g p (map f l) = map f (g (p ◦ f) l)

for every g :: (α→ Bool)→ [α]→ [α], if

I f strict.

We have, with fix and seq: . . . , if

I p 6= ⊥,

I f strict, and

I f total.

We have, with . . . , if . . .

Natural questions in each case:

1. Are the conditions necessary for every g ?

2. Are they for any g ?

29

Necessity of Certain Restrictions?

We have, with fix:

g p (map f l) = map f (g (p ◦ f) l)

for every g :: (α→ Bool)→ [α]→ [α], if

I f strict.

We have, with fix and seq: . . . , if

I p 6= ⊥,

I f strict, and

I f total.

We have, with . . . , if . . .

Natural questions in each case:

1. Are the conditions necessary for every g ?

2. Are they for any g ?

29

Necessity of Certain Restrictions?

We have, with fix:

g p (map f l) = map f (g (p ◦ f) l)

for every g :: (α→ Bool)→ [α]→ [α], if

I f strict.

We have, with fix and seq: . . . , if

I p 6= ⊥,

I f strict, and

I f total.

We have, with . . . , if . . .

Natural questions in each case:

1. Are the conditions necessary for every g ?

2. Are they for any g ?

29

Necessity of Certain Restrictions?

We have, with fix:

g p (map f l) = map f (g (p ◦ f) l)

for every g :: (α→ Bool)→ [α]→ [α], if

I f strict.

We have, with fix and seq: . . . , if

I p 6= ⊥,

I f strict, and

I f total.

We have, with . . . , if . . .

Natural questions in each case:

1. Are the conditions necessary for every g ?

2. Are they for any g ?

29

Question 1, for (only) fix

Are all strictness conditions necessary for every g ?

No!

Systematic approach: replace

Γ ` t : τ → τ
Γ ` (fix t) : τ

by
Γ ` τ ∈ Pointed Γ ` t : τ → τ

Γ ` (fix t) : τ
,

where

Pointed α, Γ ` α ∈ Pointed
Γ ` τ2 ∈ Pointed

Γ ` τ1 → τ2 ∈ Pointed

Γ ` Bool ∈ Pointed Γ ` [τ] ∈ Pointed

Gain: Even if relations for un-Pointed types not strict
anymore, free theorems continue to hold!
[Launchbury & Paterson, ESOP’96]

30

Question 1, for (only) fix

Are all strictness conditions necessary for every g ? No!

Systematic approach: replace

Γ ` t : τ → τ
Γ ` (fix t) : τ

by
Γ ` τ ∈ Pointed Γ ` t : τ → τ

Γ ` (fix t) : τ
,

where

Pointed α, Γ ` α ∈ Pointed
Γ ` τ2 ∈ Pointed

Γ ` τ1 → τ2 ∈ Pointed

Γ ` Bool ∈ Pointed Γ ` [τ] ∈ Pointed

Gain: Even if relations for un-Pointed types not strict
anymore, free theorems continue to hold!
[Launchbury & Paterson, ESOP’96]

30

Question 1, for (only) fix

Are all strictness conditions necessary for every g ? No!

Systematic approach: replace

Γ ` t : τ → τ
Γ ` (fix t) : τ

by
Γ ` τ ∈ Pointed Γ ` t : τ → τ

Γ ` (fix t) : τ

,

where

Pointed α, Γ ` α ∈ Pointed
Γ ` τ2 ∈ Pointed

Γ ` τ1 → τ2 ∈ Pointed

Γ ` Bool ∈ Pointed Γ ` [τ] ∈ Pointed

Gain: Even if relations for un-Pointed types not strict
anymore, free theorems continue to hold!
[Launchbury & Paterson, ESOP’96]

30

Question 1, for (only) fix

Are all strictness conditions necessary for every g ? No!

Systematic approach: replace

Γ ` t : τ → τ
Γ ` (fix t) : τ

by
Γ ` τ ∈ Pointed Γ ` t : τ → τ

Γ ` (fix t) : τ
,

where

Pointed α, Γ ` α ∈ Pointed
Γ ` τ2 ∈ Pointed

Γ ` τ1 → τ2 ∈ Pointed

Γ ` Bool ∈ Pointed Γ ` [τ] ∈ Pointed

Gain: Even if relations for un-Pointed types not strict
anymore, free theorems continue to hold!
[Launchbury & Paterson, ESOP’96]

30

Question 1, for (only) fix

Are all strictness conditions necessary for every g ? No!

Systematic approach: replace

Γ ` t : τ → τ
Γ ` (fix t) : τ

by
Γ ` τ ∈ Pointed Γ ` t : τ → τ

Γ ` (fix t) : τ
,

where

Pointed α, Γ ` α ∈ Pointed
Γ ` τ2 ∈ Pointed

Γ ` τ1 → τ2 ∈ Pointed

Γ ` Bool ∈ Pointed Γ ` [τ] ∈ Pointed

Gain: Even if relations for un-Pointed types not strict
anymore, free theorems continue to hold!
[Launchbury & Paterson, ESOP’96]

30

Question 1, for (only) fix

For example, we get:

I For every g :: Pointed α⇒ (α→ Bool)→ [α]→ [α],

g p (map f l) = map f (g (p ◦ f) l)

if f strict.

I For every g :: (α→ Bool)→ [α]→ [α] (in the new system),

g p (map f l) = map f (g (p ◦ f) l)

without conditions on f .

31

Question 1, for (only) fix

For example, we get:

I For every g :: Pointed α⇒ (α→ Bool)→ [α]→ [α],

g p (map f l) = map f (g (p ◦ f) l)

if f strict.

I For every g :: (α→ Bool)→ [α]→ [α] (in the new system),

g p (map f l) = map f (g (p ◦ f) l)

without conditions on f .

31

Question 2, for (only) fix

For a given type, is there a g such that the strictness conditions
are really necessary?

Not always!

The ideal scenario, automatic generation of counterexamples:

I I give the system a type, say g :: (α→ Bool)→ [α]→ [α].

I The system gives me the free theorem. Here:

for strict f , g p (map f l) = map f (g (p ◦ f) l)

I I ask: why must f be strict? What if it were not?

I The system gives me concrete g, as well as p, l , and
(non-strict) f that refute the thus naivified free theorem.

32

Question 2, for (only) fix

For a given type, is there a g such that the strictness conditions
are really necessary? Not always!

The ideal scenario, automatic generation of counterexamples:

I I give the system a type, say g :: (α→ Bool)→ [α]→ [α].

I The system gives me the free theorem. Here:

for strict f , g p (map f l) = map f (g (p ◦ f) l)

I I ask: why must f be strict? What if it were not?

I The system gives me concrete g, as well as p, l , and
(non-strict) f that refute the thus naivified free theorem.

32

Question 2, for (only) fix

For a given type, is there a g such that the strictness conditions
are really necessary? Not always!

The ideal scenario, automatic generation of counterexamples:

I I give the system a type, say g :: (α→ Bool)→ [α]→ [α].

I The system gives me the free theorem. Here:

for strict f , g p (map f l) = map f (g (p ◦ f) l)

I I ask: why must f be strict? What if it were not?

I The system gives me concrete g, as well as p, l , and
(non-strict) f that refute the thus naivified free theorem.

32

Question 2, for (only) fix

For a given type, is there a g such that the strictness conditions
are really necessary? Not always!

The ideal scenario, automatic generation of counterexamples:

I I give the system a type, say g :: (α→ Bool)→ [α]→ [α].

I The system gives me the free theorem. Here:

for strict f , g p (map f l) = map f (g (p ◦ f) l)

I I ask: why must f be strict? What if it were not?

I The system gives me concrete g, as well as p, l , and
(non-strict) f that refute the thus naivified free theorem.

32

Question 2, for (only) fix

For a given type, is there a g such that the strictness conditions
are really necessary? Not always!

The ideal scenario, automatic generation of counterexamples:

I I give the system a type, say g :: (α→ Bool)→ [α]→ [α].

I The system gives me the free theorem. Here:

for strict f , g p (map f l) = map f (g (p ◦ f) l)

I I ask: why must f be strict? What if it were not?

I The system gives me concrete g, as well as p, l , and
(non-strict) f that refute the thus naivified free theorem.

32

Question 2, for (only) fix

For a given type, is there a g such that the strictness conditions
are really necessary? Not always!

The ideal scenario, automatic generation of counterexamples:

I I give the system a type, say g :: (α→ Bool)→ [α]→ [α].

I The system gives me the free theorem. Here:

for strict f , g p (map f l) = map f (g (p ◦ f) l)

I I ask: why must f be strict? What if it were not?

I The system gives me concrete g, as well as p, l , and
(non-strict) f that refute the thus naivified free theorem.

32

Idea 1: Use the Pointed-Approach

For example, search for a g such that

Pointed α ` g : (α→ Bool)→ [α]→ [α]

but not
α ` g : (α→ Bool)→ [α]→ [α]

Natural first rule:

Γ ` τ /∈ Pointed
Γ
 (fix (λx : τ.x)) : τ

Otherwise, search further depending on type.

Problem: For term search, rules are not “syntax-directed” enough.

Particularly:
Γ
 t : τ1 → τ2 Γ
 u : τ1

Γ
 (t u) : τ2

33

Idea 1: Use the Pointed-Approach

For example, search for a g such that

Pointed α ` g : (α→ Bool)→ [α]→ [α]

but not
α ` g : (α→ Bool)→ [α]→ [α]

Natural first rule:

Γ ` τ /∈ Pointed
Γ
 (fix (λx : τ.x)) : τ

Otherwise, search further depending on type.

Problem: For term search, rules are not “syntax-directed” enough.

Particularly:
Γ
 t : τ1 → τ2 Γ
 u : τ1

Γ
 (t u) : τ2

33

Idea 1: Use the Pointed-Approach

For example, search for a g such that

Pointed α ` g : (α→ Bool)→ [α]→ [α]

but not
α ` g : (α→ Bool)→ [α]→ [α]

Natural first rule:

Γ ` τ /∈ Pointed
Γ
 (fix (λx : τ.x)) : τ

Otherwise, search further depending on type.

Problem: For term search, rules are not “syntax-directed” enough.

Particularly:
Γ
 t : τ1 → τ2 Γ
 u : τ1

Γ
 (t u) : τ2

33

Idea 1: Use the Pointed-Approach

For example, search for a g such that

Pointed α ` g : (α→ Bool)→ [α]→ [α]

but not
α ` g : (α→ Bool)→ [α]→ [α]

Natural first rule:

Γ ` τ /∈ Pointed
Γ
 (fix (λx : τ.x)) : τ

Otherwise, search further depending on type.

Problem: For term search, rules are not “syntax-directed” enough.

Particularly:
Γ
 t : τ1 → τ2 Γ
 u : τ1

Γ
 (t u) : τ2

33

Idea 1: Use the Pointed-Approach

For example, search for a g such that

Pointed α ` g : (α→ Bool)→ [α]→ [α]

but not
α ` g : (α→ Bool)→ [α]→ [α]

Natural first rule:

Γ ` τ /∈ Pointed
Γ
 (fix (λx : τ.x)) : τ

Otherwise, search further depending on type.

Problem: For term search, rules are not “syntax-directed” enough.

Particularly:
Γ
 t : τ1 → τ2 Γ
 u : τ1

Γ
 (t u) : τ2

33

Idea 1: Use the Pointed-Approach

For example, search for a g such that

Pointed α ` g : (α→ Bool)→ [α]→ [α]

but not
α ` g : (α→ Bool)→ [α]→ [α]

Natural first rule:

Γ ` τ /∈ Pointed
Γ
 (fix (λx : τ.x)) : τ

Otherwise, search further depending on type.

Problem: For term search, rules are not “syntax-directed” enough.

Particularly:
Γ
 t : τ1 → τ2 Γ
 u : τ1

Γ
 (t u) : τ2

33

Idea 1: Use the Pointed-Approach

For example, search for a g such that

Pointed α ` g : (α→ Bool)→ [α]→ [α]

but not
α ` g : (α→ Bool)→ [α]→ [α]

Natural first rule:

Γ ` τ /∈ Pointed
Γ
 (fix (λx : τ.x)) : τ

Otherwise, search further depending on type.

Problem: For term search, rules are not “syntax-directed” enough.

Particularly:
Γ

t :

τ1 → τ2 Γ

u :

τ1
Γ

(t u) :

τ2

33

Idea 2: Use the Curry/Howard-Isomorphism

I [Dyckhoff 1992] gives a proof search procedure for
intuitionistic propositional logic.

I It has been turned into a fix-free term generator for
given polymorphic types [Augustsson, AAIP’09].

I We mix it with our rule

Γ ` τ /∈ Pointed
Γ
 (fix (λx : τ.x)) : τ

and perform further adaptations . . .
[Seidel & V., FLOPS’10]

34

Idea 2: Use the Curry/Howard-Isomorphism

I [Dyckhoff 1992] gives a proof search procedure for
intuitionistic propositional logic.

I It has been turned into a fix-free term generator for
given polymorphic types [Augustsson, AAIP’09].

I We mix it with our rule

Γ ` τ /∈ Pointed
Γ
 (fix (λx : τ.x)) : τ

and perform further adaptations . . .
[Seidel & V., FLOPS’10]

34

Idea 2: Use the Curry/Howard-Isomorphism

I [Dyckhoff 1992] gives a proof search procedure for
intuitionistic propositional logic.

I It has been turned into a fix-free term generator for
given polymorphic types [Augustsson, AAIP’09].

I We mix it with our rule

Γ ` τ /∈ Pointed
Γ
 (fix (λx : τ.x)) : τ

and perform further adaptations . . .

[Seidel & V., FLOPS’10]

34

Idea 2: Use the Curry/Howard-Isomorphism

I [Dyckhoff 1992] gives a proof search procedure for
intuitionistic propositional logic.

I It has been turned into a fix-free term generator for
given polymorphic types [Augustsson, AAIP’09].

I We mix it with our rule

Γ ` τ /∈ Pointed
Γ
 (fix (λx : τ.x)) : τ

and perform further adaptations . . .
[Seidel & V., FLOPS’10]

34

The Tool on an Example

35

Another Example

36

Question 1, for (fix and) seq

Are all totality and “6= ⊥”- conditions necessary for every g ?

No!

Natural approach: replace

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

by
Γ ` τ1 ∈ Seqable Γ ` t1 : τ1 Γ ` t2 : τ2

Γ ` (seq t1 t2) : τ2
,

where

Seqable α, Γ ` α ∈ Seqable ???
Γ ` (τ1 → τ2) ∈ Seqable

Γ ` Bool ∈ Seqable Γ ` [τ] ∈ Seqable

Problem: Completely new approach needed due to complications
with function types.

37

Question 1, for (fix and) seq

Are all totality and “6= ⊥”- conditions necessary for every g ? No!

Natural approach: replace

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

by
Γ ` τ1 ∈ Seqable Γ ` t1 : τ1 Γ ` t2 : τ2

Γ ` (seq t1 t2) : τ2
,

where

Seqable α, Γ ` α ∈ Seqable ???
Γ ` (τ1 → τ2) ∈ Seqable

Γ ` Bool ∈ Seqable Γ ` [τ] ∈ Seqable

Problem: Completely new approach needed due to complications
with function types.

37

Question 1, for (fix and) seq

Are all totality and “6= ⊥”- conditions necessary for every g ? No!

Natural approach: replace

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

by
Γ ` τ1 ∈ Seqable Γ ` t1 : τ1 Γ ` t2 : τ2

Γ ` (seq t1 t2) : τ2

,

where

Seqable α, Γ ` α ∈ Seqable ???
Γ ` (τ1 → τ2) ∈ Seqable

Γ ` Bool ∈ Seqable Γ ` [τ] ∈ Seqable

Problem: Completely new approach needed due to complications
with function types.

37

Question 1, for (fix and) seq

Are all totality and “6= ⊥”- conditions necessary for every g ? No!

Natural approach: replace

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

by
Γ ` τ1 ∈ Seqable Γ ` t1 : τ1 Γ ` t2 : τ2

Γ ` (seq t1 t2) : τ2
,

where

Seqable α, Γ ` α ∈ Seqable ???
Γ ` (τ1 → τ2) ∈ Seqable

Γ ` Bool ∈ Seqable Γ ` [τ] ∈ Seqable

Problem: Completely new approach needed due to complications
with function types.

37

Question 1, for (fix and) seq

Are all totality and “6= ⊥”- conditions necessary for every g ? No!

Natural approach: replace

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

by
Γ ` τ1 ∈ Seqable Γ ` t1 : τ1 Γ ` t2 : τ2

Γ ` (seq t1 t2) : τ2
,

where

Seqable α, Γ ` α ∈ Seqable ???
Γ ` (τ1 → τ2) ∈ Seqable

Γ ` Bool ∈ Seqable Γ ` [τ] ∈ Seqable

Problem: Completely new approach needed due to complications
with function types.

37

(Equational) Free Theorems in the Presence of seq
[Johann & V., POPL’04]

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | · · · }
[R] = {(⊥,⊥)} ∪ {([x1, . . . , xn], [y1, . . . , yn]) | · · · }
R → S = {(f1, f2) | (f1 = ⊥ ⇔ f2 = ⊥) ∧ · · · }
∀R.F(R) = {(u, v) | ∀τ1, τ2,R strict, continuous,

and bottom-reflecting. · · · }

Then for every g :: τ , the pair (g, g) is contained in the (adapted)
relational interpretation of τ .

38

Question 1, for (fix and) seq

Are all totality and “6= ⊥”- conditions necessary for every g ? No!

Natural approach: replace

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

by
Γ ` τ1 ∈ Seqable Γ ` t1 : τ1 Γ ` t2 : τ2

Γ ` (seq t1 t2) : τ2
,

where

Seqable α, Γ ` α ∈ Seqable ???
Γ ` (τ1 → τ2) ∈ Seqable

Γ ` Bool ∈ Seqable Γ ` [τ] ∈ Seqable

Problem: Completely new approach needed due to complications
with function types.

39

. . . But it Can be Done [Seidel & V., ATPS’09]

At http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi:

40

http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi

Investigating the Impact of a New Feature

new feature

counterexamples

conditions

theorems

localisation

41

Investigating the Impact of a New Feature

new feature

counterexamples

conditions

theorems

localisation

41

Investigating the Impact of a New Feature

new feature

counterexamples

conditions

theorems

localisation

intuition

41

Investigating the Impact of a New Feature

new feature

counterexamples

conditions

theorems

localisation

intuition

pr
oo
f

41

Investigating the Impact of a New Feature

new feature

counterexamples

conditions

theorems

localisation

intuition

pr
oo
ftypes

41

Investigating the Impact of a New Feature

new feature

counterexamples

conditions

theorems

localisation

intuition

pr
oo
ftypes

se
ar
ch

41

Progress for General Recursion

fix

counterexamples

conditions

theorems

localisation

42

Progress for General Recursion

fix

counterexamples

conditions

theorems

localisation

42

Progress for General Recursion

fix

counterexamples

conditions

theorems

localisation

[W
adler

’89]

42

Progress for General Recursion

fix

counterexamples

conditions

theorems

localisation

[W
adler

’89]

[W
ad
le
r
’8
9]

42

Progress for General Recursion

fix

counterexamples

conditions

theorems

localisation

[W
adler

’89]

[W
ad
le
r
’8
9]

[Launchb. &
Paters. ’96]

42

Progress for General Recursion

fix

counterexamples

conditions

theorems

localisation

[W
adler

’89]

[W
ad
le
r
’8
9]

[Launchb. &
Paters. ’96]

[S
ei
de
l &

V
.
’1
0]

42

Progress for Selective Strictness

seq

counterexamples

conditions

theorems

localisation

43

Progress for Selective Strictness

seq

counterexamples

conditions

theorems

localisation

43

Progress for Selective Strictness

seq

counterexamples

conditions

theorems

localisation

[Johann
&
V
.
’04]

43

Progress for Selective Strictness

seq

counterexamples

conditions

theorems

localisation

[Johann
&
V
.
’04]

[J
oh
an
n
&
V
. ’
04
]

43

Progress for Selective Strictness

seq

counterexamples

conditions

theorems

localisation

[Johann
&
V
.
’04]

[J
oh
an
n
&
V
. ’
04
][Seidel &

V
. ’09]

43

Progress for Imprecise Errors

error

counterexamples

conditions

theorems

localisation

44

Progress for Imprecise Errors

error

counterexamples

conditions

theorems

localisation

44

Progress for Imprecise Errors

error

counterexamples

conditions

theorems

localisation

[Stenger
&
V
.
’09]

44

Progress for Imprecise Errors

error

counterexamples

conditions

theorems

localisation

[Stenger
&
V
.
’09]

[S
te
ng
er
&
V
. ’
09
]

44

Progress for Functional Logic Programs

Curry

counterexamples

conditions

theorems

localisation

45

Progress for Functional Logic Programs

Curry

counterexamples

conditions

theorems

localisation

45

Progress for Functional Logic Programs

Curry

counterexamples

conditions

theorems

localisation

[C
hrist.

et
al.

’10]

45

An Overview (and Challenges)

fix

counterexamples

conditions

theorems

localisation

[W
adler

’89]

[W
ad
le
r
’8
9]

[Launchb. &
Paters. ’96]

[S
ei
de
l &

V
.
’1
0]

seq

counterexamples

conditions

theorems

localisation
[Johann

&
V
.
’04]

[J
oh
an
n
&
V
. ’
04
][Seidel &

V
. ’09]

error

counterexamples

conditions

theorems

localisation

[Stenger
&
V
.
’09]

[S
te
ng
er
&
V
. ’
09
]

Curry

counterexamples

conditions

theorems

localisation

[C
hrist.

et
al.

’10]

46

Impact on Applications

new feature

counterexamples

conditions

theorems

localisation
intuition

pr
oo
f

47

Impact on Applications

new feature

counterexamples

conditions

theorems

localisation
intuition

pr
oo
f

impact on applications

47

Specific Extensions and Specific Applications

fix

counterexamples

conditions

theorems

localisation

[W
adler

’89]

[W
ad
le
r
’8
9]

[Launchb. &
Paters. ’96]

[S
ei
de
l &

V
.
’1
0]

seq

counterexamples

conditions

theorems

localisation
[Johann

&
V
.
’04]

[J
oh
an
n
&
V
. ’
04
][Seidel &

V
. ’09]

error

counterexamples

conditions

theorems

localisation

[Stenger
&
V
.
’09]

[S
te
ng
er
&
V
. ’
09
]

X Short Cut Fusion [Gill et al., FPCA’93]
X The Dual of Short Cut Fusion [Svenningsson, ICFP’02]
X Circular Short Cut Fusion [Fernandes et al., Haskell’07]

. . .
? Knuth’s 0-1-principle and the like [Day et al., Haskell’99],

[V., POPL’08]
? Bidirectionalisation [V., POPL’09]

?/XReasoning about invariants for monadic programs
[V., ICFP’09]

48

Specific Extensions and Specific Applications

fix

counterexamples

conditions

theorems

localisation

[W
adler

’89]

[W
ad
le
r
’8
9]

[Launchb. &
Paters. ’96]

[S
ei
de
l &

V
.
’1
0]

seq

counterexamples

conditions

theorems

localisation
[Johann

&
V
.
’04]

[J
oh
an
n
&
V
. ’
04
][Seidel &

V
. ’09]

X Short Cut Fusion [Gill et al., FPCA’93]
X The Dual of Short Cut Fusion [Svenningsson, ICFP’02]
X Circular Short Cut Fusion [Fernandes et al., Haskell’07]

. . .
? Knuth’s 0-1-principle and the like [Day et al., Haskell’99],

[V., POPL’08]
? Bidirectionalisation [V., POPL’09]

?/XReasoning about invariants for monadic programs
[V., ICFP’09]

48

Specific Extensions and Specific Applications

fix

counterexamples

conditions

theorems

localisation

[W
adler

’89]

[W
ad
le
r
’8
9]

[Launchb. &
Paters. ’96]

[S
ei
de
l &

V
.
’1
0]

seq

counterexamples

conditions

theorems

localisation
[Johann

&
V
.
’04]

[J
oh
an
n
&
V
. ’
04
][Seidel &

V
. ’09]

X Short Cut Fusion [Gill et al., FPCA’93]
X The Dual of Short Cut Fusion [Svenningsson, ICFP’02]
X Circular Short Cut Fusion [Fernandes et al., Haskell’07]

. . .
? Knuth’s 0-1-principle and the like [Day et al., Haskell’99],

[V., POPL’08]
? Bidirectionalisation [V., POPL’09]

?/XReasoning about invariants for monadic programs
[V., ICFP’09]

48

Specific Extensions and Specific Applications

fix

counterexamples

conditions

theorems

localisation

[W
adler

’89]

[W
ad
le
r
’8
9]

[Launchb. &
Paters. ’96]

[S
ei
de
l &

V
.
’1
0]

seq

counterexamples

conditions

theorems

localisation
[Johann

&
V
.
’04]

[J
oh
an
n
&
V
. ’
04
][Seidel &

V
. ’09]

X Short Cut Fusion [Gill et al., FPCA’93]
X The Dual of Short Cut Fusion [Svenningsson, ICFP’02]
X Circular Short Cut Fusion [Fernandes et al., Haskell’07]

. . .

? Knuth’s 0-1-principle and the like [Day et al., Haskell’99],
[V., POPL’08]

? Bidirectionalisation [V., POPL’09]
?/XReasoning about invariants for monadic programs

[V., ICFP’09]

48

Specific Extensions and Specific Applications

fix

counterexamples

conditions

theorems

localisation

[W
adler

’89]

[W
ad
le
r
’8
9]

[Launchb. &
Paters. ’96]

[S
ei
de
l &

V
.
’1
0]

seq

counterexamples

conditions

theorems

localisation
[Johann

&
V
.
’04]

[J
oh
an
n
&
V
. ’
04
][Seidel &

V
. ’09]

X Short Cut Fusion [Gill et al., FPCA’93]
X The Dual of Short Cut Fusion [Svenningsson, ICFP’02]
X Circular Short Cut Fusion [Fernandes et al., Haskell’07]

. . .
? Knuth’s 0-1-principle and the like [Day et al., Haskell’99],

[V., POPL’08]
? Bidirectionalisation [V., POPL’09]

?/XReasoning about invariants for monadic programs
[V., ICFP’09]

48

Specific Extensions and Specific Applications

fix

counterexamples

conditions

theorems

localisation

[W
adler

’89]

[W
ad
le
r
’8
9]

[Launchb. &
Paters. ’96]

[S
ei
de
l &

V
.
’1
0]

seq

counterexamples

conditions

theorems

localisation
[Johann

&
V
.
’04]

[J
oh
an
n
&
V
. ’
04
][Seidel &

V
. ’09]

X Short Cut Fusion [Gill et al., FPCA’93]
X The Dual of Short Cut Fusion [Svenningsson, ICFP’02]
X Circular Short Cut Fusion [Fernandes et al., Haskell’07]

. . .
? Knuth’s 0-1-principle and the like [Day et al., Haskell’99],

[V., POPL’08]
? Bidirectionalisation [V., POPL’09]

?/XReasoning about invariants for monadic programs
[V., ICFP’09]

48

Specific Extensions and Specific Applications

fix

counterexamples

conditions

theorems

localisation

[W
adler

’89]

[W
ad
le
r
’8
9]

[Launchb. &
Paters. ’96]

[S
ei
de
l &

V
.
’1
0]

seq

counterexamples

conditions

theorems

localisation
[Johann

&
V
.
’04]

[J
oh
an
n
&
V
. ’
04
][Seidel &

V
. ’09]

 Short Cut Fusion [Gill et al., FPCA’93]
 The Dual of Short Cut Fusion [Svenningsson, ICFP’02]
 Circular Short Cut Fusion [Fernandes et al., Haskell’07]

. . .
? Knuth’s 0-1-principle and the like [Day et al., Haskell’99],

[V., POPL’08]
? Bidirectionalisation [V., POPL’09]

?/XReasoning about invariants for monadic programs
[V., ICFP’09]

48

Specific Extensions and Specific Applications

fix

counterexamples

conditions

theorems

localisation

[W
adler

’89]

[W
ad
le
r
’8
9]

[Launchb. &
Paters. ’96]

[S
ei
de
l &

V
.
’1
0]

seq

counterexamples

conditions

theorems

localisation
[Johann

&
V
.
’04]

[J
oh
an
n
&
V
. ’
04
][Seidel &

V
. ’09]

 Short Cut Fusion [Gill et al., FPCA’93]
 The Dual of Short Cut Fusion [Svenningsson, ICFP’02]
 Circular Short Cut Fusion [Fernandes et al., Haskell’07]

. . .
? Knuth’s 0-1-principle and the like [Day et al., Haskell’99],

[V., POPL’08]
? Bidirectionalisation [V., POPL’09]

?/XReasoning about invariants for monadic programs
[V., ICFP’09]

48

Conclusion

Types:

I constrain the behaviour of programs

I thus lead to interesting theorems about programs

I (enable lightweight, semantic analysis methods)

I (combine well with algebraic techniques, equational reasoning)

On the programming language side:

I push towards full programming languages

I aim for exploiting more expressive type systems

On the practical side:

I efficiency-improving program transformations

I applications in specific domains (more out there?)

49

Conclusion

Types:

I constrain the behaviour of programs

I thus lead to interesting theorems about programs

I (enable lightweight, semantic analysis methods)

I (combine well with algebraic techniques, equational reasoning)

On the programming language side:

I push towards full programming languages

I aim for exploiting more expressive type systems

On the practical side:

I efficiency-improving program transformations

I applications in specific domains (more out there?)

49

Conclusion

Types:

I constrain the behaviour of programs

I thus lead to interesting theorems about programs

I (enable lightweight, semantic analysis methods)

I (combine well with algebraic techniques, equational reasoning)

On the programming language side:

I push towards full programming languages

I aim for exploiting more expressive type systems

On the practical side:

I efficiency-improving program transformations

I applications in specific domains (more out there?)

49

Conclusion

Types:

I constrain the behaviour of programs

I thus lead to interesting theorems about programs

I (enable lightweight, semantic analysis methods)

I (combine well with algebraic techniques, equational reasoning)

On the programming language side:

I push towards full programming languages

I aim for exploiting more expressive type systems

On the practical side:

I efficiency-improving program transformations

I applications in specific domains (more out there?)

49

Conclusion

Types:

I constrain the behaviour of programs

I thus lead to interesting theorems about programs

I (enable lightweight, semantic analysis methods)

I (combine well with algebraic techniques, equational reasoning)

On the programming language side:

I push towards full programming languages

I aim for exploiting more expressive type systems

On the practical side:

I efficiency-improving program transformations

I applications in specific domains (more out there?)

49

Conclusion

Types:

I constrain the behaviour of programs

I thus lead to interesting theorems about programs

I (enable lightweight, semantic analysis methods)

I (combine well with algebraic techniques, equational reasoning)

On the programming language side:

I push towards full programming languages

I aim for exploiting more expressive type systems

On the practical side:

I efficiency-improving program transformations

I applications in specific domains (more out there?)

49

Conclusion

Types:

I constrain the behaviour of programs

I thus lead to interesting theorems about programs

I (enable lightweight, semantic analysis methods)

I (combine well with algebraic techniques, equational reasoning)

On the programming language side:

I push towards full programming languages

I aim for exploiting more expressive type systems

On the practical side:

I efficiency-improving program transformations

I applications in specific domains (more out there?)

49

References I

L. Augustsson.
Putting Curry-Howard to work (Invited talk).
At Approaches and Applications of Inductive Programming,
2009.

J. Christiansen, D. Seidel, and J. Voigtländer.
Free theorems for functional logic programs.
In Programming Languages meets Program Verification,
Proceedings, pages 39–48. ACM Press, 2010.

N.A. Day, J. Launchbury, and J. Lewis.
Logical abstractions in Haskell.
In Haskell Workshop, Proceedings. Technical Report
UU-CS-1999-28, Utrecht University, 1999.

50

References II

R. Dyckhoff.
Contraction-free sequent calculi for intuitionistic logic.
Journal of Symbolic Logic, 57(3):795–807, 1992.

J.P. Fernandes, A. Pardo, and J. Saraiva.
A shortcut fusion rule for circular program calculation.
In Haskell Workshop, Proceedings, pages 95–106. ACM Press,
2007.

A. Gill, J. Launchbury, and S.L. Peyton Jones.
A short cut to deforestation.
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 223–232. ACM Press, 1993.

51

References III

J.-Y. Girard.
Interprétation functionelle et élimination des coupures dans
l’arithmétique d’ordre supérieure.
PhD thesis, Université Paris VII, 1972.

P. Johann and J. Voigtländer.
Free theorems in the presence of seq.
In Principles of Programming Languages, Proceedings, pages
99–110. ACM Press, 2004.

J. Launchbury and R. Paterson.
Parametricity and unboxing with unpointed types.
In European Symposium on Programming, Proceedings,
volume 1058 of LNCS, pages 204–218. Springer-Verlag, 1996.

52

References IV

J.C. Reynolds.
Towards a theory of type structure.
In Colloque sur la Programmation, Proceedings, volume 19 of
LNCS, pages 408–423. Springer-Verlag, 1974.

J.C. Reynolds.
Types, abstraction and parametric polymorphism.
In Information Processing, Proceedings, pages 513–523.
Elsevier, 1983.

D. Seidel and J. Voigtländer.
Taming selective strictness.
In Arbeitstagung Programmiersprachen, Proceedings, volume
154 of Lecture Notes in Informatics, pages 2916–2930. GI,
2009.

53

References V

D. Seidel and J. Voigtländer.
Automatically generating counterexamples to naive free
theorems.
In Functional and Logic Programming, Proceedings, volume
6009 of LNCS, pages 175–190. Springer-Verlag, 2010.

F. Stenger and J. Voigtländer.
Parametricity for Haskell with imprecise error semantics.
In Typed Lambda Calculi and Applications, Proceedings,
volume 5608 of LNCS, pages 294–308. Springer-Verlag, 2009.

J. Svenningsson.
Shortcut fusion for accumulating parameters & zip-like
functions.
In International Conference on Functional Programming,
Proceedings, pages 124–132. ACM Press, 2002.

54

References VI

J. Voigtländer.
Much ado about two: A pearl on parallel prefix computation.
In Principles of Programming Languages, Proceedings, pages
29–35. ACM Press, 2008.

J. Voigtländer.
Bidirectionalization for free!
In Principles of Programming Languages, Proceedings, pages
165–176. ACM Press, 2009.

J. Voigtländer.
Free theorems involving type constructor classes.
In International Conference on Functional Programming,
Proceedings, pages 173–184. ACM Press, 2009.

55

References VII

P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347–359. ACM Press, 1989.

56

	Haskell
	Free Theorems
	Extending the Language
	General Recursion
	Selective Strictness

	Dealing with Restrictions
	The State of the Art
	Conclusion
	References

