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Parametric Polymorphism in Haskell

A standard function:

map :: (α→ β)→ [α]→ [β]

map f [ ] = [ ]
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4]

— α, β 7→ Int, Int

map not [True,False] = [False,True]

— α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False]

— α, β 7→ Int,Bool

map not [1, 2, 3]  rejected at compile-time
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Another Example

takeWhile :: (α→ Bool)→ [α]→ [α]
takeWhile p [ ] = [ ]
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = [ ]

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f ) l)

Provable by induction.
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Another Example

takeWhile :: (α→ Bool)→ [α]→ [α]

filter :: (α→ Bool)→ [α]→ [α]

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f ) l)

filter p (map f l) = map f (filter (p ◦ f ) l)

2



Another Example

takeWhile :: (α→ Bool)→ [α]→ [α]

filter :: (α→ Bool)→ [α]→ [α]

g :: (α→ Bool)→ [α]→ [α]

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f ) l)

filter p (map f l) = map f (filter (p ◦ f ) l)
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Why g p (map f l) = map f (g (p ◦ f ) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map f l) and l always have equal length.

I Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f ) to the corresponding element of l .

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f ) from l ,

except that in the
former case it outputs their images under f .

I g p (map f l) is equivalent to map f (g (p ◦ f ) l).

I That is what was claimed!
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Automatic Generation of Free Theorems

At http://www-ps.iai.uni-bonn.de/ft:
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Automatic Generation of Free Theorems
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Some Applications

I Short Cut Fusion [Gill et al., FPCA’93]

I The Dual of Short Cut Fusion [Svenningsson, ICFP’02]

I Circular Short Cut Fusion [Fernandes et al., Haskell’07]

I . . .

I Knuth’s 0-1-principle and the like [Day et al., Haskell’99],
[V., POPL’08]

I Bidirectionalisation [V., POPL’09]

I Reasoning about invariants for monadic programs
[V., ICFP’09]
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A Simpler Example

Question: What do we know about functions of type
(α, α)→ α ?

Intuitively: Can only be fst or snd
(or semantically equivalent to one of them).

But how to give a formal answer?

Clearly, any g of that type must semantically be a collection of
functions of types (τ, τ)→ τ , indexed over by τ .

But this also allows a g with

gBool (x , y) = not x and
gInt (x , y) = y + 1 ,

which is not possible in Haskell at type (α, α)→ α !

To prevent this, we have to compare

gBool :: (Bool,Bool)→ Bool vs. gInt :: (Int, Int)→ Int

and ensure that they “behave identically”. But how?

7



A Simpler Example

Question: What do we know about functions of type
(α, α)→ α ?

Intuitively: Can only be fst or snd

(or semantically equivalent to one of them).

But how to give a formal answer?

Clearly, any g of that type must semantically be a collection of
functions of types (τ, τ)→ τ , indexed over by τ .

But this also allows a g with

gBool (x , y) = not x and
gInt (x , y) = y + 1 ,

which is not possible in Haskell at type (α, α)→ α !

To prevent this, we have to compare

gBool :: (Bool,Bool)→ Bool vs. gInt :: (Int, Int)→ Int

and ensure that they “behave identically”. But how?

7



A Simpler Example

Question: What do we know about functions of type
(α, α)→ α ?

Intuitively: Can only be fst or snd
(or semantically equivalent to one of them).

But how to give a formal answer?

Clearly, any g of that type must semantically be a collection of
functions of types (τ, τ)→ τ , indexed over by τ .

But this also allows a g with

gBool (x , y) = not x and
gInt (x , y) = y + 1 ,

which is not possible in Haskell at type (α, α)→ α !

To prevent this, we have to compare

gBool :: (Bool,Bool)→ Bool vs. gInt :: (Int, Int)→ Int

and ensure that they “behave identically”. But how?

7



A Simpler Example

Question: What do we know about functions of type
(α, α)→ α ?

Intuitively: Can only be fst or snd
(or semantically equivalent to one of them).

But how to give a formal answer?

Clearly, any g of that type must semantically be a collection of
functions of types (τ, τ)→ τ , indexed over by τ .

But this also allows a g with

gBool (x , y) = not x and
gInt (x , y) = y + 1 ,

which is not possible in Haskell at type (α, α)→ α !

To prevent this, we have to compare

gBool :: (Bool,Bool)→ Bool vs. gInt :: (Int, Int)→ Int

and ensure that they “behave identically”. But how?

7



A Simpler Example

Question: What do we know about functions of type
(α, α)→ α ?

Intuitively: Can only be fst or snd
(or semantically equivalent to one of them).

But how to give a formal answer?

Clearly, any g of that type must semantically be a collection of
functions of types (τ, τ)→ τ , indexed over by τ .

But this also allows a g with

gBool (x , y) = not x and
gInt (x , y) = y + 1 ,

which is not possible in Haskell at type (α, α)→ α !

To prevent this, we have to compare

gBool :: (Bool,Bool)→ Bool vs. gInt :: (Int, Int)→ Int

and ensure that they “behave identically”. But how?

7



A Simpler Example

Question: What do we know about functions of type
(α, α)→ α ?

Intuitively: Can only be fst or snd
(or semantically equivalent to one of them).

But how to give a formal answer?

Clearly, any g of that type must semantically be a collection of
functions of types (τ, τ)→ τ , indexed over by τ .

But this also allows a g with

gBool (x , y) = not x and
gInt (x , y) = y + 1

,

which is not possible in Haskell at type (α, α)→ α !

To prevent this, we have to compare

gBool :: (Bool,Bool)→ Bool vs. gInt :: (Int, Int)→ Int

and ensure that they “behave identically”. But how?

7



A Simpler Example

Question: What do we know about functions of type
(α, α)→ α ?

Intuitively: Can only be fst or snd
(or semantically equivalent to one of them).

But how to give a formal answer?

Clearly, any g of that type must semantically be a collection of
functions of types (τ, τ)→ τ , indexed over by τ .

But this also allows a g with

gBool (x , y) = not x and
gInt (x , y) = y + 1 ,

which is not possible in Haskell at type (α, α)→ α !

To prevent this, we have to compare

gBool :: (Bool,Bool)→ Bool vs. gInt :: (Int, Int)→ Int

and ensure that they “behave identically”. But how?

7



A Simpler Example

Question: What do we know about functions of type
(α, α)→ α ?

Intuitively: Can only be fst or snd
(or semantically equivalent to one of them).

But how to give a formal answer?

Clearly, any g of that type must semantically be a collection of
functions of types (τ, τ)→ τ , indexed over by τ .

But this also allows a g with

gBool (x , y) = not x and
gInt (x , y) = y + 1 ,

which is not possible in Haskell at type (α, α)→ α !

To prevent this, we have to compare

gBool :: (Bool,Bool)→ Bool vs. gInt :: (Int, Int)→ Int

and ensure that they “behave identically”.

But how?

7



A Simpler Example

Question: What do we know about functions of type
(α, α)→ α ?

Intuitively: Can only be fst or snd
(or semantically equivalent to one of them).

But how to give a formal answer?

Clearly, any g of that type must semantically be a collection of
functions of types (τ, τ)→ τ , indexed over by τ .

But this also allows a g with

gBool (x , y) = not x and
gInt (x , y) = y + 1 ,

which is not possible in Haskell at type (α, α)→ α !

To prevent this, we have to compare

gBool :: (Bool,Bool)→ Bool vs. gInt :: (Int, Int)→ Int

and ensure that they “behave identically”. But how?
7



Key Idea [Reynolds 1983]

Use arbitrary relations to tie instances together!

In the example (g :: (α, α)→ α):

I Choose a relation R ⊆ Bool× Int.

I Call (x1, x2) :: (Bool,Bool) and (y1, y2) :: (Int, Int)
related if (x1, y1) ∈ R and (x2, y2) ∈ R.

I Call f1 :: (Bool,Bool)→ Bool, f2 :: (Int, Int)→ Int
related if related inputs lead to related outputs.

I Then gBool and gInt with

gBool (x , y) = not x
gInt (x , y) = y + 1

are not related for choice of, e.g., R = {(True, 1)}.
Reynolds: g :: τ , with α free in τ , iff for every τ1, τ2,R ⊆ τ1 × τ2,

gτ1 is related to gτ2 by the “propagation” of R
(replaced for α) along τ .
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Deriving Free Theorems, in General

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {((x1, x2), (y1, y2)) | (x1, y1) ∈ R, (x2, y2) ∈ S}
[R] = {([x1, . . . , xn], [y1, . . . , yn]) | n ≥ 0, (xi , yi ) ∈ R}
R → S = {(f1, f2) | ∀(a1, a2) ∈ R. (f1 a1, f2 a2) ∈ S}
∀R.F(R) = {(u, v) | ∀τ1, τ2,R ⊆ τ1 × τ2. (uτ1 , vτ2) ∈ F(R)}

Then for every g :: τ , the pair (g, g) is contained in the relational
interpretation of τ .
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Now Formal Counterpart to Intuitive Reasoning

Let g :: (α→ Bool)→ ([α]→ [α]).

Then:

(g, g) ∈∀R.(R → idBool)→ ([R]→ [R])

⇔ ∀τ1, τ2,R ⊆ τ1 × τ2. (gτ1 , gτ2) ∈(R → idBool)→ ([R]→ [R])
⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). (gτ1 a1, gτ2 a2) ∈([R]→ [R])
⇔ ∀R. ∀(a1, a2) ∈ (R → idBool). ∀(l1, l2) ∈ [R].

(gτ1 a1 l1, gτ2 a2 l2) ∈ [R]
⇒ ∀(a1, a2) ∈ (f → idBool). ∀(l1, l2) ∈ (map f ).

(gτ1 a1 l1, gτ2 a2 l2) ∈ (map f )
⇒ ∀(l1, l2) ∈ (map f ). (gτ1 (p ◦ f ) l1, gτ2 p l2) ∈ (map f )
⇔ ∀l1 :: [τ1]. map f (gτ1 (p ◦ f ) l1) = gτ2 p (map f l1)

for every function f :: τ1 → τ2 and predicate p :: τ2 → Bool.

That is what was claimed!
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The Polymorphic λ-Calculus [Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ

| Bool | [τ ]

Terms: t := x | λx : τ.t | t t | Λα.t | t τ

|
True | False | [ ]τ | t : t | case t of {· · · }

Γ, x : τ ` x : τ
Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1.t) : τ1 → τ2

Γ ` t : τ1 → τ2 Γ ` u : τ1
Γ ` (t u) : τ2

α, Γ ` t : τ

Γ ` (Λα.t) : ∀α.τ

Γ ` t : ∀α.τ
Γ ` (t τ ′) : τ [τ ′/α]

Γ ` t : τ Γ ` u : [τ ]

Γ ` (t : u) : [τ ]

Γ ` True : Bool , Γ ` False : Bool , Γ ` [ ]τ : [τ ]

Γ ` t : Bool Γ ` u : τ Γ ` v : τ
Γ ` (case t of {True→ u ; False→ v}) : τ

Γ ` t : [τ ′] Γ ` u : τ Γ, x1 : τ ′, x2 : [τ ′] ` v : τ

Γ ` (case t of {[]→ u ; (x1 : x2)→ v}) : τ
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Deriving Free Theorems, in General

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {((x1, x2), (y1, y2)) | (x1, y1) ∈ R, (x2, y2) ∈ S}
[R] = {([x1, . . . , xn], [y1, . . . , yn]) | n ≥ 0, (xi , yi ) ∈ R}
R → S = {(f1, f2) | ∀(a1, a2) ∈ R. (f1 a1, f2 a2) ∈ S}
∀R.F(R) = {(u, v) | ∀τ1, τ2,R ⊆ τ1 × τ2. (uτ1 , vτ2) ∈ F(R)}

Then for every g :: τ , the pair (g, g) is contained in the relational
interpretation of τ .

13



General Recursion

We had that for every

g :: (α→ Bool)→ [α]→ [α]

it holds
g p (map f l) = map f (g (p ◦ f ) l)

for every choice of p, f , and l .

What about
g :: (α→ Bool)→ [α]→ [α]
g p l = [head (g p l)] ?

The above free theorem fails!

Consider, e.g., p = id, f = const True, and l = [ ].
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Why g p (map f l) = map f (g (p ◦ f ) l), Intuitively

I g :: (α→ Bool)→ [α]→ [α] must work uniformly for every
instantiation of α.

I The output list can only contain elements from the input list l .

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements.

I The lists (map f l) and l always have equal length.

I Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f ) to the corresponding element of l .

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f ) from l , except that in the
former case it outputs their images under f .

I g p (map f l) is equivalent to map f (g (p ◦ f ) l).

I That is what was claimed!
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outcome as applying (p ◦ f ) to the corresponding element of l .

Applying p to ⊥ has the same outcome as applying (p ◦ f ) to ⊥,
provided f is strict (f ⊥ = ⊥).

I g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f ) from l , except that in the
former case it outputs their images under f .

But they may also choose, at the same positions, to output ⊥.

I g p (map f l) is equivalent to map f (g (p ◦ f ) l),
if f is strict.

I This gives a revised free theorem.
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The Polymorphic λ-Calculus [Girard 1972, Reynolds 1974]

Types: τ := α | τ → τ | ∀α.τ | Bool | [τ ]
Terms: t := x | λx : τ.t | t t | Λα.t | t τ |

True | False | [ ]τ | t : t | case t of {· · · }

Γ, x : τ ` x : τ
Γ, x : τ1 ` t : τ2

Γ ` (λx : τ1.t) : τ1 → τ2

Γ ` t : τ1 → τ2 Γ ` u : τ1
Γ ` (t u) : τ2

α, Γ ` t : τ

Γ ` (Λα.t) : ∀α.τ

Γ ` t : ∀α.τ
Γ ` (t τ ′) : τ [τ ′/α]

Γ ` t : τ Γ ` u : [τ ]

Γ ` (t : u) : [τ ]

Γ ` True : Bool , Γ ` False : Bool , Γ ` [ ]τ : [τ ]

Γ ` t : Bool Γ ` u : τ Γ ` v : τ
Γ ` (case t of {True→ u ; False→ v}) : τ

Γ ` t : [τ ′] Γ ` u : τ Γ, x1 : τ ′, x2 : [τ ′] ` v : τ

Γ ` (case t of {[]→ u ; (x1 : x2)→ v}) : τ
17



Adding General Recursion

Terms: t := · · · | fix t

Γ ` t : τ → τ
Γ ` (fix t) : τ

To provide semantics, types are interpreted as pointed complete
partial orders, and:

fix t =
⊔
i≥0

(t i ⊥)

And what about free theorems?

Let us check the one for, essentially, fix :: (α→ α)→ α, namely:

∀τ1, τ2,R ⊆ τ1 × τ2.∀t1 :: τ1 → τ1, t2 :: τ2 → τ2.

(∀(a1, a2) ∈ R. (t1 a1, t2 a2) ∈ R)
⇒ (

⊔
i≥0(t i1 ⊥),

⊔
i≥0(t i2 ⊥)) ∈ R

We can guarantee the above, provided all relations are restricted to
be strict and continuous.
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Use in an Example

The function

filter :: (α→ Bool)→ [α]→ [α]
filter p [ ] = [ ]
filter p (a : as) = if p a then a : (filter p as)

else filter p as

has a “desugaring” in the (extended) calculus as follows:

fix (λf : (∀α.(α→ Bool)→ [α]→ [α]).
Λα.λp : (α→ Bool).λl : [α].
case l of {[ ] → [ ]α ;

(a : as)→ case p a of
{True → a : (f α p as) ;

False→ f α p as}})
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Adding General Recursion

Terms: t := · · · | fix t

Γ ` t : τ → τ
Γ ` (fix t) : τ
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Deriving Free Theorems in Presence of General Recursion

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | · · · }
[R] = {(⊥,⊥)} ∪ {([x1, . . . , xn], [y1, . . . , yn]) | · · · }
R → S = {(f1, f2) | ∀(a1, a2) ∈ R. (f1 a1, f2 a2) ∈ S}
∀R.F(R) = {(u, v) | ∀τ1, τ2,R strict and continuous. · · · }

Then for every g :: τ , the pair (g, g) is contained in the (adapted)
relational interpretation of τ .
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Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/~voigt/ft:
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Adding Selective Strictness

Terms: t := · · · | seq t t

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S
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Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

There are counterexamples, again.

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S
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Without seq, g p (map f l) = map f (g (p ◦ f ) l)

I g :: (α→ Bool)→ [α]→ [α] must work uniformly.
I The output list can only contain elements from the input list l

and ⊥.
I Which, and in which order/multiplicity, can only be decided

based on l and the input predicate p.
I The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements and on ⊥.
I The lists (map f l) and l always have equal length.
I Applying p to an element of (map f l) always has the same

outcome as applying (p ◦ f ) to the corresponding element of l .
I Applying p to ⊥ has the same outcome as applying (p ◦ f ),

provided f is strict.
I g with p always chooses “the same” elements from (map f l)

for output as does g with (p ◦ f ) from l , except that in the
former case it outputs their images under f , and that they
may also choose, at the same positions, to output ⊥.

I g p (map f l) = map f (g (p ◦ f ) l), if f is strict.
24



With seq, g p (map f l) = map f (g (p ◦ f ) l) ?

I g :: (α→ Bool)→ [α]→ [α] must work uniformly.

I The output list can only contain elements from the input list l
and ⊥.

I Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

I The only means for this decision are to inspect the length of l
and to check the outcome of p on its elements and on ⊥.

 Not true! Also possible:

I “checking” elements from l for being ⊥
I “checking” p for being ⊥

. . . ???
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Adding Selective Strictness

Terms: t := · · · | seq t t

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

26



Adding Selective Strictness

Terms: t := · · · | seq t t

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

26



Adding Selective Strictness

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

26



Adding Selective Strictness

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

Case distinction:

t1 t ′1 seq t1 t2 seq t ′1 t ′2 ∈ S
⊥ ⊥ ⊥ ⊥

X

⊥ 6⊥ ⊥ t ′2

?

6⊥ ⊥ t2 ⊥

?

6⊥ 6⊥ t2 t ′2

X

26



Adding Selective Strictness

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

Case distinction:

t1 t ′1 seq t1 t2 seq t ′1 t ′2 ∈ S
⊥ ⊥ ⊥ ⊥ X
⊥ 6⊥ ⊥ t ′2

?

6⊥ ⊥ t2 ⊥

?

6⊥ 6⊥ t2 t ′2

X

26



Adding Selective Strictness

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

Case distinction:

t1 t ′1 seq t1 t2 seq t ′1 t ′2 ∈ S
⊥ ⊥ ⊥ ⊥ X
⊥ 6⊥ ⊥ t ′2

?

6⊥ ⊥ t2 ⊥

?

6⊥ 6⊥ t2 t ′2 X

26



Adding Selective Strictness

Semantics: seq t1 t2 tries to evaluate t1; if/after that succeeds,
projects to t2.

What about free theorems?

Let us try the same strategy as before, looking at the free theorem
for, essentially, seq :: α→ β → β, namely:

∀R,S strict and continuous.

∀(t1, t
′
1) ∈ R, (t2, t

′
2) ∈ S. (seq t1 t2, seq t ′1 t ′2) ∈ S

Case distinction:

t1 t ′1 seq t1 t2 seq t ′1 t ′2 ∈ S
⊥ ⊥ ⊥ ⊥ X
⊥ 6⊥ ⊥ t ′2 ?
6⊥ ⊥ t2 ⊥ ?
6⊥ 6⊥ t2 t ′2 X

26



(Equational) Free Theorems in the Presence of seq
[Johann & V., POPL’04]

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | · · · }
[R] = {(⊥,⊥)} ∪ {([x1, . . . , xn], [y1, . . . , yn]) | · · · }
R → S = {(f1, f2) | (f1 = ⊥ ⇔ f2 = ⊥) ∧ · · · }
∀R.F(R) = {(u, v) | ∀τ1, τ2,R strict, continuous,

and bottom-reflecting. · · · }

Then for every g :: τ , the pair (g, g) is contained in the (adapted)
relational interpretation of τ .

27



(Equational) Free Theorems in the Presence of seq
[Johann & V., POPL’04]

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | · · · }
[R] = {(⊥,⊥)} ∪ {([x1, . . . , xn], [y1, . . . , yn]) | · · · }
R → S = {(f1, f2) | (f1 = ⊥ ⇔ f2 = ⊥) ∧ · · · }
∀R.F(R) = {(u, v) | ∀τ1, τ2,R strict, continuous,

and bottom-reflecting. · · · }

Then for every g :: τ , the pair (g, g) is contained in the (adapted)
relational interpretation of τ .

27



(Equational) Free Theorems in the Presence of seq
[Johann & V., POPL’04]

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | · · · }
[R] = {(⊥,⊥)} ∪ {([x1, . . . , xn], [y1, . . . , yn]) | · · · }
R → S = {(f1, f2) | (f1 = ⊥ ⇔ f2 = ⊥) ∧ · · · }
∀R.F(R) = {(u, v) | ∀τ1, τ2,R strict, continuous,

and bottom-reflecting. · · · }

Then for every g :: τ , the pair (g, g) is contained in the (adapted)
relational interpretation of τ .

27



Revising Free Theorems

[Wadler, FPCA’89] : for every g :: (α→ Bool)→ [α]→ [α],

g p (map f l) = map f (g (p ◦ f ) l)

I if f strict.

[Johann & V., POPL’04] : in presence of seq, if additionally:

I p 6= ⊥ and

I f total (∀x 6= ⊥. f x 6= ⊥).
...

[Stenger & V., TLCA’09] : take finite failures with imprecise
error semantics into account

[Christiansen et al., PLPV’10] : functional logic programs in Curry
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Necessity of Certain Restrictions?

We have, with fix:

g p (map f l) = map f (g (p ◦ f ) l)

for every g :: (α→ Bool)→ [α]→ [α], if

I f strict.

We have, with fix and seq: . . . , if

I p 6= ⊥,

I f strict, and

I f total.

We have, with . . . , if . . .

Natural questions in each case:

1. Are the conditions necessary for every g ?

2. Are they for any g ?
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Question 1, for (only) fix

Are all strictness conditions necessary for every g ?

No!

Systematic approach: replace

Γ ` t : τ → τ
Γ ` (fix t) : τ

by
Γ ` τ ∈ Pointed Γ ` t : τ → τ

Γ ` (fix t) : τ
,

where

Pointed α, Γ ` α ∈ Pointed
Γ ` τ2 ∈ Pointed

Γ ` τ1 → τ2 ∈ Pointed

Γ ` Bool ∈ Pointed Γ ` [τ ] ∈ Pointed

Gain: Even if relations for un-Pointed types not strict
anymore, free theorems continue to hold!
[Launchbury & Paterson, ESOP’96]
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Question 1, for (only) fix

For example, we get:

I For every g :: Pointed α⇒ (α→ Bool)→ [α]→ [α],

g p (map f l) = map f (g (p ◦ f ) l)

if f strict.

I For every g :: (α→ Bool)→ [α]→ [α] (in the new system),

g p (map f l) = map f (g (p ◦ f ) l)

without conditions on f .
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Question 2, for (only) fix

For a given type, is there a g such that the strictness conditions
are really necessary?

Not always!

The ideal scenario, automatic generation of counterexamples:

I I give the system a type, say g :: (α→ Bool)→ [α]→ [α].

I The system gives me the free theorem. Here:

for strict f , g p (map f l) = map f (g (p ◦ f ) l)

I I ask: why must f be strict? What if it were not?

I The system gives me concrete g, as well as p, l , and
(non-strict) f that refute the thus naivified free theorem.

32



Question 2, for (only) fix

For a given type, is there a g such that the strictness conditions
are really necessary? Not always!

The ideal scenario, automatic generation of counterexamples:

I I give the system a type, say g :: (α→ Bool)→ [α]→ [α].

I The system gives me the free theorem. Here:

for strict f , g p (map f l) = map f (g (p ◦ f ) l)

I I ask: why must f be strict? What if it were not?

I The system gives me concrete g, as well as p, l , and
(non-strict) f that refute the thus naivified free theorem.

32



Question 2, for (only) fix

For a given type, is there a g such that the strictness conditions
are really necessary? Not always!

The ideal scenario, automatic generation of counterexamples:

I I give the system a type, say g :: (α→ Bool)→ [α]→ [α].

I The system gives me the free theorem. Here:

for strict f , g p (map f l) = map f (g (p ◦ f ) l)

I I ask: why must f be strict? What if it were not?

I The system gives me concrete g, as well as p, l , and
(non-strict) f that refute the thus naivified free theorem.

32



Question 2, for (only) fix

For a given type, is there a g such that the strictness conditions
are really necessary? Not always!

The ideal scenario, automatic generation of counterexamples:

I I give the system a type, say g :: (α→ Bool)→ [α]→ [α].

I The system gives me the free theorem. Here:

for strict f , g p (map f l) = map f (g (p ◦ f ) l)

I I ask: why must f be strict? What if it were not?

I The system gives me concrete g, as well as p, l , and
(non-strict) f that refute the thus naivified free theorem.

32



Question 2, for (only) fix

For a given type, is there a g such that the strictness conditions
are really necessary? Not always!

The ideal scenario, automatic generation of counterexamples:

I I give the system a type, say g :: (α→ Bool)→ [α]→ [α].

I The system gives me the free theorem. Here:

for strict f , g p (map f l) = map f (g (p ◦ f ) l)

I I ask: why must f be strict? What if it were not?

I The system gives me concrete g, as well as p, l , and
(non-strict) f that refute the thus naivified free theorem.

32



Question 2, for (only) fix

For a given type, is there a g such that the strictness conditions
are really necessary? Not always!

The ideal scenario, automatic generation of counterexamples:

I I give the system a type, say g :: (α→ Bool)→ [α]→ [α].

I The system gives me the free theorem. Here:

for strict f , g p (map f l) = map f (g (p ◦ f ) l)

I I ask: why must f be strict? What if it were not?

I The system gives me concrete g, as well as p, l , and
(non-strict) f that refute the thus naivified free theorem.

32



Idea 1: Use the Pointed-Approach

For example, search for a g such that

Pointed α ` g : (α→ Bool)→ [α]→ [α]

but not
α ` g : (α→ Bool)→ [α]→ [α]

Natural first rule:

Γ ` τ /∈ Pointed
Γ 
 (fix (λx : τ.x)) : τ

Otherwise, search further depending on type.

Problem: For term search, rules are not “syntax-directed” enough.

Particularly:
Γ 
 t : τ1 → τ2 Γ 
 u : τ1

Γ 
 (t u) : τ2
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Idea 2: Use the Curry/Howard-Isomorphism

I [Dyckhoff 1992] gives a proof search procedure for
intuitionistic propositional logic.

I It has been turned into a fix-free term generator for
given polymorphic types [Augustsson, AAIP’09].

I We mix it with our rule

Γ ` τ /∈ Pointed
Γ 
 (fix (λx : τ.x)) : τ

and perform further adaptations . . .
[Seidel & V., FLOPS’10]
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The Tool on an Example
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Another Example
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Question 1, for (fix and) seq

Are all totality and “6= ⊥”- conditions necessary for every g ?

No!

Natural approach: replace

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

by
Γ ` τ1 ∈ Seqable Γ ` t1 : τ1 Γ ` t2 : τ2

Γ ` (seq t1 t2) : τ2
,

where

Seqable α, Γ ` α ∈ Seqable ???
Γ ` (τ1 → τ2) ∈ Seqable

Γ ` Bool ∈ Seqable Γ ` [τ ] ∈ Seqable

Problem: Completely new approach needed due to complications
with function types.
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(Equational) Free Theorems in the Presence of seq
[Johann & V., POPL’04]

For interpreting types as relations:

1. Replace (implicit quantification over) type variables by
(explicit) quantification over relation variables.

2. Replace types without any polymorphism by identity relations.

3. Use the following rules:

(R,S) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | · · · }
[R] = {(⊥,⊥)} ∪ {([x1, . . . , xn], [y1, . . . , yn]) | · · · }
R → S = {(f1, f2) | (f1 = ⊥ ⇔ f2 = ⊥) ∧ · · · }
∀R.F(R) = {(u, v) | ∀τ1, τ2,R strict, continuous,

and bottom-reflecting. · · · }

Then for every g :: τ , the pair (g, g) is contained in the (adapted)
relational interpretation of τ .
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Question 1, for (fix and) seq

Are all totality and “6= ⊥”- conditions necessary for every g ? No!

Natural approach: replace

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (seq t1 t2) : τ2

by
Γ ` τ1 ∈ Seqable Γ ` t1 : τ1 Γ ` t2 : τ2

Γ ` (seq t1 t2) : τ2
,

where

Seqable α, Γ ` α ∈ Seqable ???
Γ ` (τ1 → τ2) ∈ Seqable

Γ ` Bool ∈ Seqable Γ ` [τ ] ∈ Seqable

Problem: Completely new approach needed due to complications
with function types.
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. . . But it Can be Done [Seidel & V., ATPS’09]

At http://www-ps.iai.uni-bonn.de/cgi-bin/polyseq.cgi:

40
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X Short Cut Fusion [Gill et al., FPCA’93]
X The Dual of Short Cut Fusion [Svenningsson, ICFP’02]
X Circular Short Cut Fusion [Fernandes et al., Haskell’07]

. . .
? Knuth’s 0-1-principle and the like [Day et al., Haskell’99],

[V., POPL’08]
? Bidirectionalisation [V., POPL’09]

?/XReasoning about invariants for monadic programs
[V., ICFP’09]
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Conclusion

Types:

I constrain the behaviour of programs

I thus lead to interesting theorems about programs

I (enable lightweight, semantic analysis methods)

I (combine well with algebraic techniques, equational reasoning)

On the programming language side:

I push towards full programming languages

I aim for exploiting more expressive type systems

On the practical side:

I efficiency-improving program transformations

I applications in specific domains (more out there?)
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