Much Ado about Two

A Pearl on Parallel Prefix Computation

Janis Voigtlander

Technische Universitat Dresden

POPL'08

Parallel Prefix Computation

Given: inputs x1,...,x, and an associative operation &

Task: compute the values x1,x1 ® x2,...,x1 D X2 B -+ D X,

Parallel Prefix Computation

Given: inputs xq,...,x, and an associative operation @
Task: compute the values x1,x1 B Xx2,...,.x1 B X2 P -+ P Xy
Solution: X1 Xp X3 X4 X5 Xg X7 Xg
N
S
AN
®
AN
S
AN
S
AN
®
N\
S
AN
T

Parallel Prefix Computation

Alternative: X1 X0 X3 Xa X5 Xg X7 Xg

\\Ji \\Ji
) 6‘9 (&%) 6‘9
G P EBEF

Parallel Prefix Computation

Alternative:

X1 X2 X3 X4 X5 Xe X7 X8

N
@

X1 X2

N
@

-
@

X3

]

@

N
@

— |

%)

\Ji
o | ©

|
N
S D DD

X4 X5 Xo X7 X8

@

my

@

N
© | &

—my
S

|
@

A la [Sklansky 1960]:

X1 X2
N
T

A la [Sklansky 1960]:

X] X2 X3
N\
@

AN

T

A la [Sklansky 1960]:

X1 X0 X3 Xa

\\Ji
A

T

A la [Sklansky 1960]:

X1 X2 X3 X4 Xp

N N
@ @
@

[

A la [Sklansky 1960]:

X1 X2 X3 X4 X5 X

A la [Sklansky 1960]:

X1 X2 X3 X4 X5 X X7

N\ N\ N\
D D D
\ N\
e P E‘B
5%

i

A la [Sklansky 1960]:

X] Xo X3 X4 X5 Xg X7 Xg

\\J: \\Ji
D 6‘9 D 6‘9
e P @6‘9

A la [Sklansky 1960]:

X1 X2 X3 X4 X5 X X7 Xg X9

N
@

\

@

N\ N\ AN
(&3] &)
N
N
b P

|
i

A la [Sklansky 1960]:

X1 X2 X3 X4 X5 Xp X7 Xg X9 X10

N
©

A la [Sklansky 1960]:

X1 X2 X3 X4 X5 Xe X7 Xg X9 X10 X11

N
@

N N N
@ @

A la [Sklansky 1960]:

X1 X2 X3 X4 X5 Xp X7 Xg X9 X10 X11 X12

N\ N\ N\ N\
D D D D
N\ N\ N\ N\

() () () ()
NS \ \
e P D EPEPG]‘B
I N1 N1 N1 N1
EEXRN

A la [Sklansky 1960]:

X1 X2 X3 X4 X5 Xp X7 Xg X9 X10 X11 X12 X13

N\ N\ N\ N\ N\
D &) (o) (o) (o)
X | N\ N\ N\

G P)))
e \ \
e & P EPG]?@\B

I N1 N1 N1 N1
REERY-

A la [Sklansky 1960]:

X1 X2 X3 X4 X5 Xp X7 Xg X9 X10 X11 X12 X13 X14

N INL N N INL [N

© | © | © © | O | &

N N\ | AN

O O o o O

Ay |
o

T

I

——0—

X
N\ N1
TTTTTY

A la [Sklansky 1960]:

X1 X2 X3 X4 X5 Xp X7 Xg Xg X10 X11 X12 X13 X14 X15

N INE NN NN I\
o | o | & | & | & | | O
N AymY | AN

O O o O

Ay |

A la [Sklansky 1960]:

X1 X2 X3 X4 X5 Xp X7 Xg X9 X10 X11 X12 X13 X14 X15 X16

NN N N N N NN
(&) ® ©® (&) ©® ©® (&) ®
N N \ \
GBEB\T @6‘9 b D @E‘B

A la [Sklansky 1960]:

X1 X2 X3 X4 X5 Xe X7 Xg Xg X10 X11 X12 X13 X14 X15 X16 X17

N I\
@ @ 2] 2] @ 2] 2] @
\ N ey ey
@ o D o D o D

N %
o D ® D D D

© S DD
T I

TTTTTTTy

A la [Sklansky 1960]:

X1 X2 X3 X4 X5 X X7 Xg Xg X10 X11 X12 X13 X14 X15 X16 X17 X18

N\ N\ N N\ N\ N\ N\ N\
)) b b)) b b
N\ N | N\ \
(o) D P (o) D D
N N

b P b P
&0 o XXX
REEEXRRRY

A la [Sklansky 1960]:

X1 X2 X3 X4 X5 X X7 Xg X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19

N\ N\ N\ N\ N\ N\ N\ N\
)) b b b b) b
N\ AN N\ \

(o) D &) D b

N N N

b b qBE‘B o D
@@@é@ EB@@EB

A la [Sklansky 1960]:

X1 X2 X3 X4 X5 Xe X7 Xg X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

N\ | NN\ N\ \

@ @ 3 @ @

AN AN
S¥) ®

N N

ANEEEN, i

S @@é) E‘B

: ®

Sklansky's Method in Haskell

sklansky :: (&« — o —) — [a] — [o]
sklansky (&) [x] = [x]
sklansky (®) xs = us++vs

where t = (length xs 4+ 1) ‘div* 2
(ys, zs) = splitAt t xs
us = sklansky (®) ys

vs = [(last us) @ v |v « sklansky (&) zs]

Sklansky's Method in Haskell

sklansky :: (&« — o —) — [a] — [o]
sklansky (&) [x] = [x]
sklansky (®) xs = us++vs

where t = (length xs 4+ 1) ‘div* 2
(ys, zs) = splitAt t xs
us = sklansky (®) ys
vs = [(last us) @ v |v « sklansky (&) zs]

Wanted: reasoning principles, verification techniques,
systematic testing approach, ...

A Knuth-like 0-1-2-Principle

Given: serial :: (¢ — a — a) — [a] — [o]
serial (&) (x : xs) = go x xs
where go x || = [x]
gox(y:ys)=x:g80(x®y)ys

A Knuth-like 0-1-2-Principle

Given: serial :: (¢ — a — a) — [a] — [o]
serial (&) (x : xs) = go x xs
where go x || = [x]
gox(y:ys)=x:go(x@y)ys

candidate :: (&« — o —) — [a] — [¢]

A Knuth-like 0-1-2-Principle

Given: serial :: (¢ — a — a) — [a] — [o]
serial (&) (x : xs) = go x xs
where go x || = [x]
gox(y:ys)=x:go(x@y)ys

candidate :: (&« — o —) — [a] — [¢]

data Three = Zero | One | Two

A Knuth-like 0-1-2-Principle

Given:

Theorem:

serial :: (@ — a — a) — [a] — [o]
serial (&) (x : xs) = go x xs
where go x || = [x]
gox(y:ys)=x:go(x@y)ys

candidate :: (&« — o —) — [a] — [¢]

data Three = Zero | One | Two

If for every xs :: [Three] and associative
(®) :: Three — Three — Three,

candidate (®) xs = serial (&) xs,

then the same holds for every type 7, xs :: [7], and
associative (@) =7 — T — T.

Why 0-1-27 And How?

A question: What can candidate :: (a« — o — a) — [a] — [q]
do, given an operation @ and input list [x1,...,%s] 7

Why 0-1-27 And How?

A question: What can candidate :: (a« — o — a) — [a] — [q]
do, given an operation @ and input list [x1,...,%s] 7

The answer: Create an output list consisting of expressions built
from @ and x1,...,x,. Independently of the a-type !

Why 0-1-27 And How?

A question: What can candidate :: (a« — o — a) — [a] — [q]
do, given an operation @ and input list [x1,...,%s] 7

The answer: Create an output list consisting of expressions built
from @ and xq,...,x,. Independently of the a-type !

Among these expressions, there are good ones:

S5} @

/\ /N

D X4 ® S5

/\ VAN /N
© X3 X1 X2 D X5
/\ /\

X1 X2 X3 X4

Why 0-1-27 And How?

A question: What can candidate :: (a« — o — a) — [a] — [q]
do, given an operation @ and input list [x1,...,%s] 7

The answer: Create an output list consisting of expressions built
from @ and xq,...,x,. Independently of the a-type !

Among these expressions, there are good ones:

bad ones:
@
VAN
© ©®
/\ /\

X1 X2 X3 X5

@
VAN
S5 S5
/N /N
X1 X2 D X5
/\
X3 X4
S7}
\ /\
X1 © X1
/\ /\ ’

Why 0-1-27 And How?

Among these expressions, there are good ones:

@
/\ 7\
D X4 S5
/\ /\ /\
© X3 X1 X2 D X5
/\
X1 X2 X3 Xa
bad ones:
©® ©® ©®
VRN /\ /\
@ @ ,ox 8 , o o,
/\ /\ /\ /\
X1 X2 X3 Xg X2 X2 X3 X2
and ones in the wrong position:
@
@ /N
X1 S5} ®

/\
a o /N /N

X1 X2 X3 X4

That's How!

Let
@1 ‘ Zero One Two
Zero | Zero One Two
One | One Two Two
Two | Two Two Two

and

D2 ‘ Zero One Two
Zero | Zero One Two
One | One One Two
Two | Two One Two

That's How!

Let
@1 ‘ Zero One Two P ‘ Zero One Two
Zero | Zero One Two Zero | Zero One Two
One | One Two Two and One | One One Two
Two | Two Two Two Two | Two One Two

If candidate (®1) is correct on each list of the form

[(Zero,)* One (, Zero)* (, Two)*|

That's How!

Let
@1 ‘ Zero One Two P ‘ Zero One Two
Zero | Zero One Two Zero | Zero One Two
One | One Two Two and One | One One Two
Two | Two Two Two Two | Two One Two

If candidate (®1) is correct on each list of the form
[(Zero,)* One (, Zero)* (, Two)*]
and candidate (©2) is correct on each list of the form

[(Zero,)* One, Two (, Zero)*]

then candidate is correct for associative @ at arbitrary type.

A Knuth-like 0-1-2-Principle

Given:

Theorem:

serial :: (@ — a — a) — [a] — [o]
serial (&) (x : xs) = go x xs
where go x || = [x]
gox(y:ys)=x:go(x@y)ys

candidate :: (&« — o —) — [a] — [¢]

data Three = Zero | One | Two

If for every xs :: [Three] and associative
(®) :: Three — Three — Three,

candidate (®) xs = serial (&) xs,

then the same holds for every type 7, xs :: [7], and
associative (@) =7 — T — T.

The Overall Proof

» To get going, uses relational parametricity [Reynolds 1983] to
derive a free theorem from candidate’s type [Wadler 1989].

» Remaining proof largely done by program calculation.
(But also a bit “by picture”.)

» Formalisation available in Isabelle/HOL:
S. Bohme.

Much Ado about Two. Formal proof development.
The Archive of Formal Proofs.

http://afp.sf.net/entries/MuchAdoAboutTwo.shtml

10

References |

[R.P. Brent and H.T. Kung.
The chip complexity of binary arithmetic.

In ACM Symposium on Theory of Computing, Proceedings,

pages 190-200. ACM Press, 1980.

[G.E. Blelloch.
Prefix sums and their applications.
In J.H. Reif, editor, Synthesis of Parallel Algorithms, pages
35-60. Morgan Kaufmann, 1993.

@ N.A. Day, J. Launchbury, and J. Lewis.
Logical abstractions in Haskell.
Haskell Workshop, 1999.

11

References |l

@ D.E. Knuth.
The Art of Computer Programming, volume 3: Sorting and
Searching.
Addison-Wesley, 1973.

@ J.C. Reynolds.
Types, abstraction and parametric polymorphism.
In Information Processing, Proceedings, pages 513-523.
Elsevier Science Publishers B.V., 1983.

[M. Sheeran.
Searching for prefix networks to fit in a context using a lazy
functional programming language.
Hardware Design and Functional Languages, 2007.

12

References ll|

El

J. Sklansky.

Conditional-sum addition logic.

IRE Transactions on Electronic Computers, EC-9(6):226-231,
1960.

P. Wadler.

Theorems for free!

In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

13

