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Parallel Prefix Computation

Given: inputs x1, . . . , xn and an associative operation ⊕

Task: compute the values x1, x1 ⊕ x2, . . . , x1 ⊕ x2 ⊕ · · · ⊕ xn
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Parallel Prefix Computation
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A la [Sklansky 1960]:

x1 x2
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A la [Sklansky 1960]:
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Sklansky’s Method in Haskell

sklansky :: (α→ α→ α)→ [α]→ [α]
sklansky (⊕) [x ] = [x ]
sklansky (⊕) xs = us ++ vs

where t = (length xs + 1) ‘div ‘ 2
(ys, zs) = splitAt t xs

us = sklansky (⊕) ys

vs = [(last us)⊕ v | v ← sklansky (⊕) zs]
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Sklansky’s Method in Haskell

sklansky :: (α→ α→ α)→ [α]→ [α]
sklansky (⊕) [x ] = [x ]
sklansky (⊕) xs = us ++ vs

where t = (length xs + 1) ‘div ‘ 2
(ys, zs) = splitAt t xs

us = sklansky (⊕) ys

vs = [(last us)⊕ v | v ← sklansky (⊕) zs]

Wanted: reasoning principles, verification techniques,
systematic testing approach, . . .
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A Knuth-like 0-1-2-Principle

Given: serial :: (α→ α→ α)→ [α]→ [α]
serial (⊕) (x : xs) = go x xs

where go x [] = [x ]
go x (y : ys) = x : go (x ⊕ y) ys
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A Knuth-like 0-1-2-Principle

Given: serial :: (α→ α→ α)→ [α]→ [α]
serial (⊕) (x : xs) = go x xs

where go x [] = [x ]
go x (y : ys) = x : go (x ⊕ y) ys

candidate :: (α→ α→ α)→ [α]→ [α]

data Three = Zero | One | Two

Theorem: If for every xs :: [Three ] and associative
(⊕) :: Three → Three → Three,

candidate (⊕) xs ≡ serial (⊕) xs ,

then the same holds for every type τ , xs :: [τ ], and
associative (⊕) :: τ → τ → τ .
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Why 0-1-2? And How?

A question: What can candidate :: (α→ α→ α)→ [α]→ [α]
do, given an operation ⊕ and input list [x1, . . . , xn] ?
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do, given an operation ⊕ and input list [x1, . . . , xn] ?

The answer: Create an output list consisting of expressions built
from ⊕ and x1, . . . , xn. Independently of the α-type !
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Why 0-1-2? And How?

Among these expressions, there are good ones:

⊕
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x1 x2
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⊕

⊕

x3 x4

x5

, . . . ,
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That’s How!

Let

⊕1 Zero One Two

Zero Zero One Two

One One Two Two

Two Two Two Two

and

⊕2 Zero One Two

Zero Zero One Two

One One One Two

Two Two One Two
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That’s How!

Let

⊕1 Zero One Two

Zero Zero One Two

One One Two Two

Two Two Two Two

and

⊕2 Zero One Two

Zero Zero One Two

One One One Two

Two Two One Two

If candidate (⊕1) is correct on each list of the form

[(Zero, )∗ One (,Zero)∗ (,Two)∗]

and candidate (⊕2) is correct on each list of the form

[(Zero, )∗ One,Two (,Zero)∗]

then candidate is correct for associative ⊕ at arbitrary type.
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A Knuth-like 0-1-2-Principle

Given: serial :: (α→ α→ α)→ [α]→ [α]
serial (⊕) (x : xs) = go x xs

where go x [] = [x ]
go x (y : ys) = x : go (x ⊕ y) ys

candidate :: (α→ α→ α)→ [α]→ [α]

data Three = Zero | One | Two

Theorem: If for every xs :: [Three ] and associative
(⊕) :: Three → Three → Three,

candidate (⊕) xs ≡ serial (⊕) xs ,

then the same holds for every type τ , xs :: [τ ], and
associative (⊕) :: τ → τ → τ .
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The Overall Proof
�

To get going, uses relational parametricity [Reynolds 1983] to
derive a free theorem from candidate’s type [Wadler 1989].

�
Remaining proof largely done by program calculation.
(But also a bit “by picture”.)

�
Formalisation available in Isabelle/HOL:

S. Böhme.
Much Ado about Two. Formal proof development.
The Archive of Formal Proofs.
http://afp.sf.net/entries/MuchAdoAboutTwo.shtml
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