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Parallel Prefix Computation

Given: inputs x1,...,x, and an associative operation &

Task: compute the values x1,x1 ® x2,...,x1 D X2 B -+ D X,



Parallel Prefix Computation

Given: inputs xq,...,x, and an associative operation @
Task: compute the values x1,x1 B Xx2,...,.x1 B X2 P -+ P Xy
Solution: X1 Xp X3 X4 X5 Xg X7 Xg
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Parallel Prefix Computation

Alternative: X1 X0 X3 Xa X5 Xg X7 Xg
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Parallel Prefix Computation

Alternative:

X1 X2 X3 X4 X5 Xe X7 X8

N
@

X1 X2

N
@

-
@

X3

]

@

N
@

— |

%)

\Ji
o | ©

|
N
S D DD

X4 X5 Xo X7 X8

@

my

@

N
© | &

—my
S

|
@




A la [Sklansky 1960]:
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A la [Sklansky 1960]:
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A la [Sklansky 1960]:
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A la [Sklansky 1960]:
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A la [Sklansky 1960]:
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A la [Sklansky 1960]:

X1 X2 X3 X4 X5 Xp X7 Xg Xg X10 X11 X12 X13 X14 X15

N INE NN NN I\
o | o | & | & | & | | O
N AymY | AN

O O o O

Ay |




A la [Sklansky 1960]:
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A la [Sklansky 1960]:
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A la [Sklansky 1960]:
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A la [Sklansky 1960]:
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A la [Sklansky 1960]:
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Sklansky's Method in Haskell

sklansky :: (&« — o — ) — [a] — [o]
sklansky (&) [x] = [x]
sklansky (®) xs = us++vs

where t = (length xs 4+ 1) ‘div* 2
(ys, zs) = splitAt t xs
us = sklansky (®) ys

vs = [(last us) @ v |v « sklansky (&) zs]



Sklansky's Method in Haskell

sklansky :: (&« — o — ) — [a] — [o]
sklansky (&) [x] = [x]
sklansky (®) xs = us++vs

where t = (length xs 4+ 1) ‘div* 2
(ys, zs) = splitAt t xs
us = sklansky (®) ys
vs = [(last us) @ v |v « sklansky (&) zs]

Wanted: reasoning principles, verification techniques,
systematic testing approach, ...



A Knuth-like 0-1-2-Principle

Given: serial :: (¢ — a — a) — [a] — [o]
serial (&) (x : xs) = go x xs
where go x || = [x]
gox(y:ys)=x:g80(x®y)ys
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A Knuth-like 0-1-2-Principle

Given:

Theorem:

serial :: (@ — a — a) — [a] — [o]
serial (&) (x : xs) = go x xs
where go x || = [x]
gox(y:ys)=x:go(x@y)ys

candidate :: (&« — o — ) — [a] — [¢]

data Three = Zero | One | Two

If for every xs :: [Three] and associative
(®) :: Three — Three — Three,

candidate (®) xs = serial (&) xs,

then the same holds for every type 7, xs :: [7], and
associative (@) =7 — T — T.



Why 0-1-27 And How?

A question: What can candidate :: (a« — o — a) — [a] — [q]
do, given an operation @ and input list [x1,...,%s] 7
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The answer: Create an output list consisting of expressions built
from @ and x1,...,x,. Independently of the a-type !
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A question: What can candidate :: (a« — o — a) — [a] — [q]
do, given an operation @ and input list [x1,...,%s] 7

The answer: Create an output list consisting of expressions built
from @ and xq,...,x,. Independently of the a-type !

Among these expressions, there are good ones:
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Why 0-1-27 And How?

A question: What can candidate :: (a« — o — a) — [a] — [q]
do, given an operation @ and input list [x1,...,%s] 7

The answer: Create an output list consisting of expressions built
from @ and xq,...,x,. Independently of the a-type !
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Why 0-1-27 And How?

Among these expressions, there are good ones:
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That's How!

Let
@1 ‘ Zero One Two
Zero | Zero One Two
One | One Two Two
Two | Two Two Two

and

D2 ‘ Zero One Two
Zero | Zero One Two
One | One One Two
Two | Two One Two



That's How!

Let
@1 ‘ Zero One Two P ‘ Zero One Two
Zero | Zero One Two Zero | Zero One Two
One | One Two Two and One | One One Two
Two | Two Two Two Two | Two One Two

If candidate (®1) is correct on each list of the form

[(Zero,)* One (, Zero)* (, Two)*|



That's How!

Let
@1 ‘ Zero One Two P ‘ Zero One Two
Zero | Zero One Two Zero | Zero One Two
One | One Two Two and One | One One Two
Two | Two Two Two Two | Two One Two

If candidate (®1) is correct on each list of the form
[(Zero,)* One (, Zero)* (, Two)*]
and candidate (©2) is correct on each list of the form

[(Zero,)* One, Two (, Zero)*]

then candidate is correct for associative @ at arbitrary type.



A Knuth-like 0-1-2-Principle

Given:

Theorem:

serial :: (@ — a — a) — [a] — [o]
serial (&) (x : xs) = go x xs
where go x || = [x]
gox(y:ys)=x:go(x@y)ys

candidate :: (&« — o — ) — [a] — [¢]

data Three = Zero | One | Two

If for every xs :: [Three] and associative
(®) :: Three — Three — Three,

candidate (®) xs = serial (&) xs,

then the same holds for every type 7, xs :: [7], and
associative (@) =7 — T — T.



The Overall Proof

» To get going, uses relational parametricity [Reynolds 1983] to
derive a free theorem from candidate’s type [Wadler 1989].

» Remaining proof largely done by program calculation.
(But also a bit “by picture”.)

» Formalisation available in Isabelle/HOL:
S. Bohme.

Much Ado about Two. Formal proof development.
The Archive of Formal Proofs.

http://afp.sf.net/entries/MuchAdoAboutTwo.shtml
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