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Short Cut Fusion [Gill et al. 1993]

Example: fromTo n m = go n

where go i = if i > m then []
else i : go (succ i)

sum [] = 0
sum (x : xs) = x + sum xs

Problem: Expressions like

sum (fromTo 1 10)

involve creating and consuming an intermediate list.
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Short Cut Fusion [Gill et al. 1993]

Example: fromTo n m = go n

where go i = if i > m then []
else i : go (succ i)

sum [] = 0
sum (x : xs) = x + sum xs

Problem: Expressions like

sum (fromTo 1 10)

involve creating and consuming an intermediate list.

Solution: 1. Write fromTo in terms of build.
2. Write sum in terms of foldr.
3. Use the following foldr/build-rule:

foldr c n (build prod) � prod c n
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The Dual of Short Cut Fusion [Svenningsson 2002]

Example: fromTo n m = go n

where go i = if i > m then []
else i : go (succ i)

zip [] [] = []
zip (x : xs) (y : ys) = (x , y) : zip xs ys

Problem: Expressions like

zip (fromTo 1 10) (fromTo ′a′ ′j′)

involve two intermediate lists.
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The Dual of Short Cut Fusion [Svenningsson 2002]

Example: fromTo n m = go n

where go i = if i > m then []
else i : go (succ i)

zip [] [] = []
zip (x : xs) (y : ys) = (x , y) : zip xs ys

Problem: Expressions like

zip (fromTo 1 10) (fromTo ′a′ ′j′)

involve two intermediate lists.

Solution: 1. Write fromTo in terms of unfoldr.
2. Write zip in terms of destroy.
3. Use the following destroy/unfoldr-rule:

destroy cons (unfoldr psi e) � cons psi e
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Why a destroy/build-Rule?

Example: fromTo n m = go n

where go i = if i > m then []
else i : go (succ i)

zip [] [] = []
zip (x : xs) (y : ys) = (x , y) : zip xs ys

Problem: What if we have

zip (fromTo 1 10) (build prod)

where the producer of the second intermediate list
cannot be expressed in terms of unfoldr?
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Why a destroy/build-Rule?

Example: fromTo n m = go n

where go i = if i > m then []
else i : go (succ i)

zip [] [] = []
zip (x : xs) (y : ys) = (x , y) : zip xs ys

Problem: What if we have

zip (fromTo 1 10) (build prod)

where the producer of the second intermediate list
cannot be expressed in terms of unfoldr?

After fusion:
destroy (λpsi xs → zipD (λi → if i > 10 · · · ) psi 1 xs)

(build prod)
where zipD = · · ·
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A destroy/build-Rule, How?

By the definitions,

destroy cons (build prod)

is the same as
cons match (prod (:) [])

where
data Maybe α = Nothing | Just α

match :: [α] → Maybe (α, [α])
match [] = Nothing
match (x : xs) = Just (x , xs)
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A destroy/build-Rule, How?

By the definitions,

destroy cons (build prod)

is the same as
cons match (prod (:) [])

where
data Maybe α = Nothing | Just α

match :: [α] → Maybe (α, [α])
match [] = Nothing
match (x : xs) = Just (x , xs)

Why, then, not simply

destroy cons (build prod)
�

cons id (prod (λx xs → Just (x , xs)) Nothing) ?
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Does it Preserve Semantics?

All we know about cons and prod are their types:

cons :: ∀β. (β → Maybe (T1, β)) → β → T2

and
prod :: ∀β. (T1 → β → β) → β → β

But that might be enough, thanks to free theorems [Wadler 1989]!

In the following, a proof sketch.
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Where to Start?

The free theorem for

cons :: ∀β. (β → Maybe (T1, β)) → β → T2

is:

∀τ1, τ2,R ⊆ τ1 × τ2,R strict, continuous, and bottom-reflecting.

∀p :: τ1 → Maybe (T1, τ1), q :: τ2 → Maybe (T1, τ2).
(p 6= ⊥ ⇔ q 6= ⊥)

∧ (∀(x , y) ∈ R. (p x , q y) ∈ liftMaybe(lift(,)(id,R)))

⇒ ∀(z , v) ∈ R. cons p z = cons q v
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Where to Start?

The free theorem for

cons :: ∀β. (β → Maybe (T1, β)) → β → T2 ,

specialized down to function level, is:

∀τ1, τ2, f :: τ1 → τ2, f strict and total.
∀p :: τ1 → Maybe (T1, τ1), q :: τ2 → Maybe (T1, τ2).

(p 6= ⊥ ⇔ q 6= ⊥)
∧ (∀x :: τ1. (p x , q (f x)) ∈ liftMaybe(lift(,)(id, f )))

⇒ ∀y :: τ1. cons p y = cons q (f y)

Recall that we want to prove
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How to Continue?

All we need is a function f such that:

1. f is strict and total

2. ∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f ))

3. f (prod (:) []) = prod (λx xs → Just (x , xs)) Nothing

(Note that the condition match 6= ⊥ ⇔ id 6= ⊥ is trivially fulfilled.)
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How to Continue?

All we need is a function f such that:

1. f is strict and total

2. ∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f ))

3. f (prod (:) []) = prod (λx xs → Just (x , xs)) Nothing

(Note that the condition match 6= ⊥ ⇔ id 6= ⊥ is trivially fulfilled.)

The free theorem for

prod :: ∀β. (T1 → β → β) → β → β

is:

∀τ1, τ2,R ⊆ τ1 × τ2,R strict, continuous, and bottom-reflecting.

∀p :: T1 → τ1 → τ1, q :: T1 → τ2 → τ2.

(p 6= ⊥ ⇔ q 6= ⊥)
∧ (∀x :: T1. (p x 6= ⊥ ⇔ q x 6= ⊥)

∧ ∀(y , z) ∈ R. (p x y , q x z) ∈ R)
⇒ ∀(v ,w) ∈ R. (prod p v , prod q w) ∈ R
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Almost There

All we need is a function f such that:

1. f is strict and total

2. ∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f ))

3. ∀x :: T1, y :: [T1]. f ((:) x y) = (λx xs → Just (x , xs)) x (f y)

4. f [] = Nothing

(Note that the “6= ⊥”-conditions are again trivially fulfilled.)
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Almost There

All we need is a function f such that:

1. f is strict and total

2. ∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f ))

3. ∀x :: T1, y :: [T1]. f ((:) x y) = (λx xs → Just (x , xs)) x (f y)

4. f [] = Nothing

(Note that the “6= ⊥”-conditions are again trivially fulfilled.)

The last two conditions leave no room other than to consider:

f [] = Nothing
f (x : y) = Just (x , f y)

This f is strict and total!
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Almost There

2. ∀x :: [T1]. (match x , id (f x)) ∈ liftMaybe(lift(,)(id, f )) ?

f [] = Nothing
f (x : y) = Just (x , f y)
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Finishing Up

We have:

liftMaybe(lift(,)(id, f )) = {(⊥,⊥), (Nothing,Nothing)} ∪
{(Just x1, Just y1) | (x1, y1) ∈ lift(,)(id, f )}

lift(,)(id, f ) = {(⊥,⊥)} ∪ {((x1, x2), (y1, y2)) | x1 = y1 ∧ f x2 = y2}
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Finishing Up

We have:

liftMaybe(lift(,)(id, f )) = {(⊥,⊥), (Nothing,Nothing)} ∪
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To establish
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we check against the definitions:
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match (x : y) = Just (x , y) f (x : y) = Just (x , f y)
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Finishing Up

We have:

liftMaybe(lift(,)(id, f )) = {(⊥,⊥), (Nothing,Nothing)} ∪
{(Just x1, Just y1) | (x1, y1) ∈ lift(,)(id, f )}
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we check against the definitions:

match [] = Nothing f [] = Nothing
match (x : y) = Just (x , y) f (x : y) = Just (x , f y)

Done!
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Conclusion
�

The destroy/build-rule holds unconditionally.

�
Part of the proof work was push-the-button.

�
The remainder was very much goal-driven.

�
The approach scales to other transformation rules as well.

�
Sascha Böhme implemented a great tool!

�
Go play with it:
http://linux.tcs.inf.tu-dresden.de/~voigt/ft/
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