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Short Cut Fusion [Gill et al. 1993]

Example: fromTo n m=go n
where go i = if i > m then |]
else /:go (succ i)

sum ] =0
sum (x : xs) = x + sum xs

Problem: Expressions like
sum (fromTo 1 10)

involve creating and consuming an intermediate list.



Short Cut Fusion [Gill et al. 1993]

Example: fromTo n m=go n
where go i = if i > m then |]
else /:go (succ i)

sum ] =0
sum (x : xs) = x + sum xs

Problem: Expressions like
sum (fromTo 1 10)

involve creating and consuming an intermediate list.

Solution: 1. Write fromTo in terms of build.
2. Write sum in terms of foldr.
3. Use the following foldr/build-rule:

foldr ¢ n (build prod) ~» prod ¢ n



The Dual of Short Cut Fusion [Svenningsson 2002]

Example: fromTo n m=go n
where go i = if i > m then |]
else /:go (succ i)

zip ] [ =1

zip (x : xs) (y : ys) = (x,y) : zip xs ys

Problem: Expressions like
zip (fromTo 1 10) (fromTo ’a’ ’j’)

involve two intermediate lists.



The Dual of Short Cut Fusion [Svenningsson 2002]

Example: fromTo n m=go n
where go i = if i > m then |]
else /:go (succ i)

zip ] [ =1

zip (x : xs) (y : ys) = (x,y) : zip xs ys

Problem: Expressions like
zip (fromTo 1 10) (fromTo ’a’ ’j’)

involve two intermediate lists.

Solution: 1. Write fromTo in terms of unfoldr.
2. Write zip in terms of destroy.
3. Use the following destroy /unfoldr-rule:

destroy cons (unfoldr psi €) ~~ cons psi e



Why a destroy/build-Rule?

Example: fromTo n m=go n
where go i = if i > m then |]
else /:go (succ i)

zip ] [ =1

zip (x : xs) (y : ys) = (x,y) : zip xs ys
Problem: What if we have

zip (fromTo 1 10) (build prod)

where the producer of the second intermediate list
cannot be expressed in terms of unfoldr?



Why a destroy/build-Rule?

Example: fromTo n m=go n
where go i = if i > m then |]
else /:go (succ i)

zip ] [ [

zip (x : xs) (y : ys) = (x,y) : zip xs ys
Problem: What if we have

zip (fromTo 1 10) (build prod)

where the producer of the second intermediate list
cannot be expressed in terms of unfoldr?

After fusion:
destroy (Apsi xs — zipD (Ai — if i > 10 ---) psi 1 xs)
(build prod)
where zipD = - - -



A destroy/build-Rule, How?

By the definitions,

destroy cons (build prod)

is the same as
cons match (prod (:) [])

where
data Maybe oo = Nothing | Just «
match :: [a] — Maybe (o, [a])
match [] = Nothing
match (x : xs) = Just (x, xs)



A destroy/build-Rule, How?

By the definitions,

destroy cons (build prod)

is the same as
cons match (prod (:) [])

where
data Maybe oo = Nothing | Just «
match :: [a] — Maybe (o, [a])
match [] = Nothing
match (x : xs) = Just (x, xs)

Why, then, not simply

destroy cons (build prod)

A

cons id (prod (Ax xs — Just (x, xs)) Nothing) ?



Does it Preserve Semantics?

All we know about cons and prod are their types:
cons :: V3. (8 — Maybe (T1,3)) — 8 — T2

and
prod V3. (T1 = B—0)—F—0

But that might be enough, thanks to free theorems [Wadler 1989]!

In the following, a proof sketch.



Where to Start?

The free theorem for
cons :: V3. (8 — Maybe (T1,3)) — 8 — T2
is:

V11,7, R C 71 X 73, R strict, continuous, and bottom-reflecting.
Vp :: 71 — Maybe (T1,71),q :: 72 — Maybe (T, 7).
(p#Leqg#1)
N (Y(x,y) € R. (p x,q y) € liftmaybe(lift)(id, R)))
= VY(z,v) € R. cons p z= cons q v
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How to Continue?

All we need is a function f such that:
1. f is strict and total
2. Vx :: [Tq]. (match x,id (f x)) € liftmaybe(lift((id, f))
3. f (prod (:) []) = prod (Ax xs — Just (x, xs)) Nothing
(Note that the condition match # L < id # L is trivially fulfilled.)
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Almost There

All we need is a function f such that:
1. f is strict and total
2. Vx : [Tq]. (match x,id (f x)) € liftmaybe(lift()(id, f))
3. Vx o To,y o [Te]. £ ((2) x y) = (Ax xs — Just (x,xs)) x (f y)
4. f [] = Nothing
(Note that the “# L"-conditions are again trivially fulfilled.)
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This f is strict and total!



Almost There

2. Vx : [T1]. (match x,id (f x)) € liftmaybe(lift()(id, f)) 7

] = Nothing
f(x:y)=Just (x,f y)



Finishing Up
We have:

liftmaybe (lift)(id, )) = {(L, L), (Nothing, Nothing)} U
{(Just x1, Just y1) | (x1,y1) € lift((id, f)}

lift(y(id, £) = {(L, L)} U {((a,x), (y1,52)) | 1 = y1 A f xo = yo}

10
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Donel
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Conclusion

v

The destroy/build-rule holds unconditionally.

v

Part of the proof work was push-the-button.

» The remainder was very much goal-driven.

» The approach scales to other transformation rules as well.
» Sascha Bohme implemented a great tool!
> Go play with it:

http://linux.tcs.inf.tu-dresden.de/ voigt/ft/
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