
Taming Selective Strictness

D. Seidel and J. Voigtl änder

Institut für Theoretische Informatik
Technische Universität Dresden

TUD-FI09-06 — Juni 2009

TECHNISCHE UNIVERSITÄT
DRESDEN

Fakult ät Informatik

Technische Berichte

Technical Reports
ISSN 1430-211X

Technische Universität Dresden
Fakultät Informatik
D-01062 Dresden
Germany

URL: http://www.inf.tu-dresden.de/

Taming Selective Strictness

Daniel Seidel∗ Janis Voigtländer

Institut für Theoretische Informatik

Technische Universität Dresden

01062 Dresden, Germany

{seideld,voigt}@tcs.inf.tu-dresden.de

Abstract

Free theorems establish interesting properties of parametrically polymorphic functions,
solely from their types, and serve as a nice proof tool. For pure and lazy functional program-
ming languages, they can be used with very few preconditions. Unfortunately, in the presence
of selective strictness, as provided in languages like Haskell, their original strength is reduced.
In this paper we present an approach for restrengthening them. By a refined type system which
tracks the use of strict evaluation, we rule out unnecessary restrictions that otherwise emerge
from the general suspicion that strict evaluation may be used at any point. Additionally, we
provide an implemented algorithm determining all refined types for a given term.

1 Introduction

A Short Introduction to Free Theorems

Write down the definition of a polymorphic function on a piece of paper. Tell me its
type, but be careful not to let me see the function’s definition. I will tell you a theorem
that the function satisfies.

Introduction to “Theorems for Free!” (Wadler 1989)

That is the essence of free theorems first promoted by Wadler (1989), based on Reynolds’ abstrac-
tion theorem (Reynolds 1983). Formalizing the lack of type specific information of parametrically
polymorphic functions, and hence their inability to do type specific transformations, Wadler devel-
ops equations that hold for each parametrically polymorphic function of a given type independently
of the concrete implementation.

For example, consider the function head :: ∀α.[α] → α. Its type says: “For each type τ , and
a list of elements of type τ as input, head returns some element of type τ .”. Now obviously head
has no chance to know any type specific element, for not knowing τ . It has just the structural
information from the input list. Nothing more. The formalization of that fact brings us finally to
the following equation:

head ◦ (map f) = f ◦ head (1)

where f is an arbitrary function of type τ → τ ′, with τ and τ ′ arbitrary. The symbol ◦ is function
composition, with the function on the right-hand side applied first, and map f applies f to each
element of a list.

Although we have not mentioned the concrete action of head on a list, you might guess that it
simply returns the first element of a list. But what if we rename head to last? Probably now we
assume the function to return the last element of a list. Of course both associations are permissible
and they will not harm equation (1) at all because it is independent of the concrete function head !
Moreover one may regard the right-hand side of the equation as more simple than the left-hand
side. Here we focus on a main application of free theorems: automated program transformations.
Independently of the concrete functions head and f we can substitute the left-hand side by the
right-hand side.
∗This author was supported by the DFG under grant VO 1512/1-1.

Section 1 Introduction

Sure, the just given example for a program transformation does not necessarily speed up a
program, since a lazy language would not map f to each element of a list when afterward using
just the head element, but it would do so for last . Disregarding that small example, there are far
more important program transformations relying on free theorems. The best known is probably the
foldr/build -rule (short cut fusion, (Gill et al. 1993)), implemented in the current GHC (Glasgow
Haskell Compiler, version 6.10.1, also earlier) as on optimization rule fold/build removing inter-
mediate list structures. Similar rules (destroy/unfoldr , destroy/build , . . .), as well as generalized
analogues to non-list algebraic data structures have also been studied (Svenningsson 2002; Johann
2002; Voigtländer 2008).

The original investigation of free theorems was made in the pure polymorphic lambda calculus
(Girard/Reynolds calculus, System F) which is, in particular due to the inability to capture general
recursion, a radical simplification compared to real-world functional programming languages. The
restrictions arising with the introduction of a fixpoint operator, not definable in a pure polymorphic
calculus, have been known from the beginning (Wadler 1989), and their necessity has already been
studied (Launchbury and Paterson 1996; Seidel and Voigtländer 2009). In general, the presence
of an undefined value (denoted as ⊥), as imposed by diverging recursions and incomplete pattern
matches, forces strictness conditions on free theorems. For example, f in equation (1) has to be
strict (i.e. f ⊥ = ⊥) to guarantee the equation when an undefined value is present1. Strictness
conditions are not the focus in this paper, and we just take them as required from now on. Our
interest is in the influence of selective strict evaluation on free theorems.

Trouble with Selective Strictness Modern lazy functional programming languages like Haskell
and Clean extend the pure polymorphic lambda calculus not only by a fixpoint combinator, they
additionally allow selective strictness. In Haskell strict evaluation is provided through the function
seq , taking two arguments and forcing the first to be evaluated before returning the second one.
Note that this is not a deep seq , i.e. it only returns undefined if its first argument is completely
undefined. For nested undefined values like a list with undefined elements, it returns its second
argument. Similar features are strict data constructors and the strict function application “$!”
forcing the function’s arguments to be evaluated even if not used. Although seq was primarily
introduced into Haskell to improve speed (Hudak et al. 2007), the big advantage of selective strict-
ness is the possibility to remove space leaks otherwise likely to arise in call-by-need languages.
The disadvantage lies in the weakening of parametricity, and hence the free theorems built on it.
This, for example, is especially distressing because the already mentioned optimization rules like
short-cut fusion, used in the Haskell compiler GHC, rely on parametricity and hence may become
unsound.2

To get an impression of the problems that arise by the introduction of selective strictness, we
regard the well-known Haskell prelude function foldl , its strict double foldl ′ (in the Haskell module
Data.List), as well as the functions foldl ′′ and foldl ′′′ which force strict evaluation at rather
arbitrary points. Possible implementations in Haskell are shown in Figure 1. Strict evaluation is
captured via seq .

All four functions are of type ∀a.∀b.(a → b → a) → a → [b] → a, and the corresponding free
theorem, disregarding strict evaluation, states

f (foldl c n xs) = foldl c′ (f n) (map g xs) (2)

for appropriately typed c, c′, n, xs and strict f , g such that f (c x y) = c′ (f x) (g y) for all x and
y.

As an example how easy we prove well-known results by free theorems, taking g as the identity
function (id = λx → x), we get the fusion property (Hutton 1999) of foldl and hence, it can be
proved directly by the free theorem in the absence of selective strictness. When we take strict

1And indeed, it has to be present for functions of that type to handle the case with an empty list as input.
2The expression foldr undefined 0 (build seq) will return 0 when the program is compiled without opti-

mization and Prelude.undefined when compiled with the option -O, because then the fold/build-rule fires. The
function build can be found in the module GHC.Exts.

2

foldl c = fix
(λh n ys →

case ys of
[] → n
x : xs →

let n′ = c n x in h n′ xs)

foldl ′ c = fix
(λh n ys →

case ys of
[] → n
x : xs →

let n′ = c n x in seq n′ (h n′ xs))

foldl ′′ c = fix
(λh n ys →

seq (c n)
(case ys of

[] → n
x : xs → seq xs

(seq x
(let n′ = c n x in h n′ xs))))

foldl ′′′ c = seq c (fix
(λh n ys →

case ys of
[] → n
x : xs →

let n′ = c n x in h n′ xs))

Figure 1: Variations of the foldl Function with Different Uses of seq .

evaluation into account, the situation changes. For the Haskell function foldl ′ we can show that
the free theorem and also the fusion property do not hold.

Consider equation (2) with the instantiations

f = λx→ if x then True else ⊥ g = id

c = c′ = λx y → if y then True else x n = False

xs = [False,True] .

Regarding foldl everything is fine, but for the strict foldl ′ we get True = ⊥. In that case it suffices
to restrict f to be total, but if we consider the functions foldl ′′ and foldl ′′′, for which the just given
instantiation does not break the free theorem, we will detect the necessity of further restrictions.
Consider each of the following instantiations respectively:

f = id g = t1 c = t2 c′ = t2 n = True xs = [False]

f = id g = id c = t3 c′ = t4 n = False xs = []

f = id g = id c = ⊥ c′ = λx→ ⊥ n = False xs = []

where t1 = λx → if x then True else ⊥, t2 = λx y → if x then True else y, t3 = λx y →
if x then True else ⊥ and t4 = λx→ if x then λy → True else ⊥.

For each of the instantiations equation (2) holds for foldl and foldl ′, but the first and the second
instantiation fail for foldl ′′, while the last one fails for foldl ′′′. All three failures go back to different
uses of seq , forcing different restrictions. The use of seq on c forces that c 6= ⊥ iff c′ 6= ⊥, seq
on (c n) forces that c z 6= ⊥ iff c′ (f z) 6= ⊥ for all z and seq on x forces g to be total. Only
the strict evaluation of the list xs requires no additional condition. This might be apparent, since
strict evaluation of lists can be forced also by a simple case statement.

Hence, we see that not whether strict evaluation is used somewhere, far more where it is
used, determines the necessity and the quality of restrictions. So a natural consequence is the
question how we can express detailed information about the use of strict evaluation such that it
can influence the restrictions on free theorems. Since free theorems only depend on the type of a
term, the information has to be part of the type signature, and that is exactly our approach.

Taming Selective Strictness The idea is to keep track of strict evaluation in the type signa-
tures. This is not a new proposal and the first implementation of Haskell which supported selective
strictness3 treated seq as an overloaded function, rather than a fully polymorphic one, making its
use visible in the type signature through the type class Eval. Because of the necessity to change

3Haskell version 1.3

3

Section 2 Standard Parametricity

lots of type signatures when inserting a single seq , the idea was discarded in the later Haskell 98
standard, making seq fully polymorphic (Hudak et al. 2007).

But, even when present, the type class approach was not capable to capture all effects of strict
evaluation since it presumes that the effects can be read off from marks at type variables only.
This is not given. For example foldl ′′′ in Figure 1 would have no Eval-restriction at all, but
clearly, as just stated by an example, the use of seq on c causes problems. Indeed, the Haskell
report version 1.3 (Section 6.2.7)writes “Functions as well as all other built-in types are in Eval.”.
But even if we consider function types to be in general not in Eval, and force their membership
explicitly by allowing type class restrictions on function types4, the problems of the approach
remain. Consider a function f :: Eval(α → Int) ⇒ (α → Int) → (α → Int) → Int. It could be of
the form f = λg h → . . . where Eval restricts g and h to be suitable for strict evaluation. But
what if we need the restriction only for g? From the type class approach, there is no way to tell
that seq is only used on one of the functions.

To avoid these problems, we choose another way to track strict evaluation in the type. We
provide special annotations at quantification of type variables and also at function types. This
leads to a clear correspondence to the impact of strict evaluation on free theorems. Combining the
insights of Johann and Voigtländer (2004) with ideas of Launchbury and Paterson (1996) regarding
general recursion, we present a calculus allowing for refined free theorems by a refined type system.
We then develop an algorithm computing all refined types for a given term.

Our testbed is a standard lambda calculus with a fixpoint and a strictness primitive, very
similar to Haskell, but with explicit type annotations. We refine the calculus by adding a second
version of type constructors for function types and quantification of type variables, adjust the
typing rules, and prove the parametricity theorem for the refined calculus, which allows more
control over the restrictions on free theorems. Afterwards, we provide an algorithm gaining all
possible refined types for a given ordinarily typed term. This allows the automatized derivation
of strong free theorems for a term typed in the standard calculus. In particular, we are able to
clarify automatically which seq in foldl ′, foldl ′′, and foldl ′′′ in Figure 1 causes which restriction.

Structure of the Paper After we have introduced the standard calculus PolySeq in Section 2
and recalled the parametricity theorem for that calculus, we move on to a calculus with a refined
type system, called PolySeq*, in Section 3. Here we prove equivalence of expressiveness to the
standard calculus. Again we give the, now stronger, parametricity theorem. Section 4 presents a
further alteration of PolySeq* with the same set of typable terms, but with improved algorithmic
properties. The last calculus, PolySeqC , is presented in Section 5. It is again equivalent in
expressiveness to the previous calculi, but acts on parameterized types, allowing a term to be
attached to the set of all its possible types. The typing rules, still written in a declarative style,
can be used algorithmically to gain all possible refined types for a given term with standard type
annotations. Up to that point, we abstain from base types and algebraic types other than lists in
our calculi. Section 6 closes that gap by indicating the straightforward nature of these extensions.
Moreover, it points to an implementation of PolySeqC , ready to use online5, and not only assigning
refined types to a term, but also showing refined free theorems for the obtained types.

2 Standard Parametricity

We start out from a standard denotational semantics for a polymorphic lambda-calculus that
corresponds to Haskell.

The syntax of types and terms is given in Figure 2, where α ranges over type variables, and
x over term variables. We include lists as representative for algebraic data types. Note that the
calculus is explicitly typed and that type abstraction and application are explicit in the syntax as

4This is not allowed in Haskell 98, but as an extension in GHC, enabled by -XFlexibleContexts.
5http://linux.tcs.inf.tu-dresden.de/~seideld/cgi-bin/polyseq.cgi

4

http://linux.tcs.inf.tu-dresden.de/~seideld/cgi-bin/polyseq.cgi

τ ::= α | [τ] | τ → τ | ∀α.τ
t ::= x | []τ | t : t | case t of {[]→ t ; x : x→ t} |

λx :: τ.t | t t | Λα.t | tτ | fix t | let! x = t in t

Figure 2: Syntax of Types τ and Terms t.

Γ, x :: τ ` x :: τ (Var) Γ ` []τ :: [τ] (Nil)

Γ ` t1 :: τ Γ ` t2 :: [τ]
(Cons)

Γ ` (t1 : t2) :: [τ]

Γ ` t :: [τ1] Γ ` t1 :: τ2 Γ, x1 :: τ1, x2 :: [τ1] ` t2 :: τ2
(LCase)

Γ ` (case t of {[]→ t1 ; x1 : x2 → t2}) :: τ2

Γ, x :: τ1 ` t :: τ2
(Abs)

Γ ` (λx :: τ1.t) :: τ1 → τ2

α,Γ ` t :: τ
(TAbs)

Γ ` (Λα.t) :: ∀α.τ

Γ ` t1 :: τ1 → τ2 Γ ` t2 :: τ1 (App)
Γ ` (t1 t2) :: τ2

Γ ` t :: τ → τ (Fix)
Γ ` fix t :: τ

Figure 3: Typing Rules in PolySeq (and later PolySeq*), Part 1.

well. General recursion is captured via a fixpoint primitive, while selective strictness (à la seq) is
provided via a strict-let construct.

Figures 3 and 4 give the typing rules for the calculus. Standard conventions apply here. In
particular, typing environments Γ take the form α1, . . . , αk, x1 :: τ1, . . . , xl :: τl with distinct αi
and xj , where all free variables occurring in a τj have to be among the listed type variables.

For example, the standard Haskell function map can be defined as the following term and then
satisfies ` map :: τ , where τ = ∀α.∀β.(α→ β)→ [α]→ [β]:

fix (λm :: τ.Λα.Λβ.λh :: α→ β.λl :: [α].
case l of {[]→ []β ; x : y → (h x) : ((mα)β h y)}) .

The denotational semantics interprets types as pointed complete partial orders (for short, pcpos;
least element always denoted ⊥). The definition in Figure 5, assuming θ to be a mapping from
type variables to pcpos, is entirely standard. The operation lift⊥ takes a complete partial order,
adds a new element ⊥ to the carrier set, defines this new ⊥ to be below every other element, and
leaves the ordering otherwise unchanged. To avoid confusion, the original elements are tagged,
i.e., lift⊥ S = {⊥} ∪ {bsc | s ∈ S}. For list types, prior to lifting, [] is only related to itself,
while the ordering between “− : −”-values is component-wise. Also note the use of the greatest
fixpoint to provide for infinite lists. The function space lifted in the definition of [[τ1 → τ2]]θ is
the one of monotonic and continuous maps between [[τ1]]θ and [[τ2]]θ, ordered point-wise. Finally,
polymorphic types are interpreted as sets of functions from pcpos to values restricted as in the last
line of Figure 5, and again ordered point-wise (i.e., g1 v g2 iff for every pcpo D, g1 D v g2 D).

The semantics of terms in Figure 6 is also standard. It uses λ for denoting anonymous functions,
and the following operator:

h $ a =
{
f a if h = bfc
⊥ if h = ⊥ .

The expression
⊔
n≥0 ([[t]]θ,σ $)n ⊥ in the definition for fix means the supremum of the chain

Γ ` t :: ∀α.τ1 (TApp)
Γ ` (tτ2) :: τ1[τ2/α]

Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2
(SLet)

Γ ` (let! x = t1 in t2) :: τ2

Figure 4: Typing Rules in PolySeq , Part 2.

5

Section 2 Standard Parametricity

[[α]]θ = θ(α)

[[[τ]]]θ = gfp (λS.lift⊥ ({[]} ∪ {a : b | a ∈ [[τ]]θ, b ∈ S}))
[[τ1 → τ2]]θ = lift⊥ {f : [[τ1]]θ → [[τ2]]θ}
[[∀α.τ]]θ = {g | ∀D pcpo. (g D) ∈ [[τ]]θ[α7→D]}

Figure 5: Semantics of Types.

[[x]]θ,σ = σ(x)

[[[]τ]]θ,σ = b[]c
[[t1 : t2]]θ,σ = b[[t1]]θ,σ : [[t2]]θ,σc
[[case t of {[]→ t1 ; x1 : x2 → t2}]]θ,σ =8><>:

[[t1]]θ,σ if [[t]]θ,σ = b[]c
[[t2]]θ,σ[x1 7→a, x2 7→b] if [[t]]θ,σ = ba : bc
⊥ if [[t]]θ,σ = ⊥

[[λx :: τ.t]]θ,σ = bλa.[[t]]θ,σ[x 7→a]c
[[t1 t2]]θ,σ = [[t1]]θ,σ $ [[t2]]θ,σ

[[Λα.t]]θ,σ = λD.[[t]]θ[α7→D],σ

[[tτ]]θ,σ = [[t]]θ,σ [[τ]]θ

[[fix t]]θ,σ =
F
n≥0 ([[t]]θ,σ $)n ⊥

[[let! x = t1 in t2]]θ,σ =

(
[[t2]]θ,σ[x7→a] if [[t1]]θ,σ = a 6= ⊥
⊥ if [[t1]]θ,σ = ⊥

Figure 6: Semantics of Terms.

⊥ v ([[t]]θ,σ $ ⊥) v ([[t]]θ,σ $ ([[t]]θ,σ $ ⊥)) · · · . Altogether, we have that if Γ ` t :: τ and σ(x) ∈ [[τ ′]]θ
for every x :: τ ′ occurring in Γ, then [[t]]θ,σ ∈ [[τ]]θ.

The key to parametricity results is the definition of a family of relations by induction on a
calculus’ type structure. The appropriate such logical relation for our current setting is defined in
Figure 7, assuming ρ to be a mapping from type variables to binary relations between pcpos. The
operation list takes a relation R and maps it to

list R = gfp (λS.{(⊥,⊥), (b[]c, b[]c)} ∪ {(ba : bc, bc : dc) | (a, c) ∈ R, (b, d) ∈ S}) ,

where again the greatest fixpoint is taken. For two pcpos D1 and D2, Rel(D1, D2) collects all
relations between them that are strict, continuous, and bottom-reflecting. Strictness and continuity
are just the standard notions, i.e., membership of the pair (⊥,⊥) and closure under suprema. A
relation R is bottom-reflecting if (a, b) ∈ R implies that a = ⊥ iff b = ⊥. The corresponding
explicit condition on f and g in the definition of ∆τ1→τ2,ρ serves the purpose of ensuring that
bottom-reflection is preserved throughout the logical relation. Overall, induction on τ gives the
following important lemma, where Rel is the union of all Rel(D1, D2).

Lemma 2.1. If ρ maps only to relations in Rel, then ∆τ,ρ ∈ Rel as well.

The lemma is crucial for then proving the following parametricity theorem.

∆α,ρ = ρ(α)

∆[τ],ρ = list ∆τ,ρ

∆τ1→τ2,ρ = {(f, g) | f = ⊥ iff g = ⊥, ∀(a, b) ∈ ∆τ1,ρ. (f $ a, g $ b) ∈ ∆τ2,ρ}
∆∀α.τ,ρ = {(u, v) | ∀D1, D2 pcpos,R ∈ Rel(D1, D2). (u D1, v D2) ∈ ∆τ,ρ[α7→R]}

Figure 7: Standard Logical Relation.

6

Γ ` [τ] ∈ Seqable (C-List)

Γ ` τ1 →ε τ2 ∈ Seqable (C-Arrow)
αε ∈ Γ

(C-Var)
Γ ` α ∈ Seqable

αε,Γ ` τ ∈ Seqable
(C-TAbsν)ν∈{◦,ε}

Γ ` ∀αν .τ ∈ Seqable

Figure 8: Class Membership Rules for Seqable in PolySeq* (and later PolySeq+).

Theorem 2.2 (Parametricity). If Γ ` t :: τ , then for every θ1, θ2, ρ, σ1, and σ2 such that

• for every α occurring in Γ, ρ(α) ∈ Rel(θ1(α), θ2(α)) and

• for every x :: τ ′ occurring in Γ, (σ1(x), σ2(x)) ∈ ∆τ ′,ρ ,

we have ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ,ρ .

The proof can be found in Appendix A.

3 Refining the Calculus

If we recall the fold functions from the introduction and the “naive” version of the corresponding
free theorem, stated in equation (2), we can compare that version with the “secure” version arising
from Theorem 2.2. The “secure” theorem requires f and g total, c = ⊥ iff c′ = ⊥ and c z = ⊥ iff
c′ (f z) = ⊥ for all z in addition to the restrictions on the “naive” theorem.

As already seen in the introduction and also visible from the proof of Theorem 2.2, these
additional restrictions arise from different uses of strict evaluation and are each respectively only
necessary if strict evaluation is forced at a particular place. Hence, it is reasonable to make strict
evaluation (and the place of its use) visible from the type of a term. If we can predict by the type
where strict evaluation, i.e. (SLet), is used, or better where not, we could, depending on that
information, release some of the restrictions newly arising in the “secure” free theorem. The idea
is to extend the set of type constructors to distinguish types that can be used for strictly evaluated
terms from types that cannot.

First, we distinguish two kinds of type variables, one allowed to be used as type of strictly
evaluated terms, and one not. The first is marked by ε in the typing environment and quantified
by ∀ε, while the second is marked by ◦ when appearing in the typing environment and quantified by
∀◦. Furthermore, for function types we take →ε as a constructor that produces types suitable for
strictly evaluated terms and introduce a second constructor→◦ which produces therefor unsuitable
types. In the case of lists, strict evaluation is uninteresting because it can easily be imitated by a
case statement and hence is no extension compared to a calculus without strict evaluation.

We can summarize the types whose terms are suitable to be strictly evaluated in a class Seqable
that is defined by the rules shown in Figure 8. The first three rules correspond directly to the
just given information. The rules (C-TAbsν)ν∈{◦,ε}, parameterized by ν, arise because we do not
distinguish between ⊥ and the polymorphic value that is ⊥ for all type instantiations (since Haskell
does not either). By taking αε instead of αν in the premise, we in excess put the type ∀◦α.α into
Seqable6. The single inhabitant of that type is ⊥, which leads to let! x = t1 in t being equal to ⊥
and hence replaceable by fix (λx :: τ.x) for appropriate τ . Therefore that case is not of interest.

With the system just defined we can restrict the use of (SLet) introducing strict evaluation
such that τ1 in the rule has to be in Seqable. Also for type applications we allow only Seqable types
as instances for type variables quantified by ∀ε. Additionally, a rule for type application to terms
of type ∀◦α.τ is needed. These rules are shown in Figure 9 and replace the ones from Figure 4.

6More exactly, we also include ∀◦α.∀ν1β1.∀νnβn.α in Seqable, but these types are as well only inhabited by
⊥.

7

Section 3 Refining the Calculus

Γ ` τ2 ∈ Seqable Γ ` t :: ∀α.τ1
(TApp’)

Γ ` (tτ2) :: τ1[τ2/α]

Γ ` t :: ∀◦α.τ1 (TApp’◦)
Γ ` (tτ2) :: τ1[τ2/α]

Γ ` τ1 ∈ Seqable Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2
(SLet’)

Γ ` (let! x = t1 in t2) :: τ2

Figure 9: Replacements for the Rules in Figure 4 in PolySeq*.

Γ, x :: τ1 ` t :: τ2
(Abs◦)

Γ ` (λx :: τ1.t) :: τ1 →◦ τ2
Γ ` t1 :: τ1 →◦ τ2 Γ ` t2 :: τ1 (App◦)

Γ ` (t1 t2) :: τ2

α◦,Γ ` t :: τ
(TAbs◦)

Γ ` (Λα.t) :: ∀◦α.τ
Γ ` t :: τ →◦ τ (Fix◦)
Γ ` fix t :: τ

Γ ` t :: τ1 τ1 � τ2
(Sub)

Γ ` t :: τ2

Figure 10: New Typing Rules in PolySeq*.

Notice that we apply the convention that the mark ε is the “invisible” mark and can be dropped.
This is used throughout the rest of the paper.

The rules of Figure 3 remain part of the typing rules. But the new ◦-marked type constructors
lead to additional rules, shown in Figure 10. All extensions are straightforward. Only the rule
(Sub) requires some explanation. It is motivated by a subtype relation. Consider the types
(τ1 →◦ τ2) → [τ3] and (τ1 → τ2) → [τ3]. All terms typable to the first one will be typable to the
second one as well. But, for example, the PolySeq term λf :: τ1 → τ2. let! x = f in [] is only
typable to the second type. So whether strict evaluation is allowed at arguments of a function or
not decides over the subtype relation. The subtyping system presented in Figure 11 goes a bit
further and restricts the relation thus that a Seqable supertype forces a Seqable subtype. We can
think of that as follows: the set of functions that need to be allowed to be strictly evaluated is
only part of the set of functions that do not. The rules are written as parameterized rule families,
where {◦, ε} is the ordered set of marks with ◦ < ε.

With the extended type system and the appropriately extended typing rules a refined calcu-
lus is given. We call it PolySeq*. Before moving on to the semantics, we state the syntactic
correspondence to PolySeq. The following definition helps to abstract from the marks at type
variables, types, and type annotations.

Definition 3.1 (mark eraser). The function | · | takes a term, type, or typing environment in
PolySeq* and returns it with all marks at type variables, ∀-quantifiers, and arrows removed. The
result is called the erasure of the input.

With the help of Definition 3.1 we can express that the set of typable terms in PolySeq and
PolySeq* is equivalent up to the marks at the type annotations.

α � α (S-Var)

τ1 � σ1 σ2 � τ2 (S-Arrowν,ν′)ν,ν′∈{◦,ε}, ν′6ν
σ1 →ν σ2 � τ1 →ν′ τ2

τ1 � τ2 (S-Allν,ν′)ν,ν′∈{◦,ε}, ν6ν′

∀να.τ1 � ∀ν
′
α.τ2

τ � τ ′
(S-List)

[τ] � [τ ′]

Figure 11: Subtyping Rules for PolySeq* (and PolySeq+).

8

Lemma 3.2. If we have Γ, t, τ such that Γ ` t :: τ in PolySeq, then Γ ` t :: τ holds in PolySeq*.
If we have Γ, t, τ such that Γ ` t :: τ in PolySeq*, then |Γ| ` |t| :: |τ | holds in PolySeq.

For the proof of Lemma 3.2 two auxiliary lemmas are necessary.

Lemma 3.3. If a type τ is closed under a typing environment Γ then |Γ| ` |τ | ∈ Seqable holds.

Proof. Easy induction over the type structure of τ .

Lemma 3.4. Let τ , τ ′ be two types. If τ � τ ′ then |τ | = |τ ′|.

Proof. Induction over the derivation tree of τ � τ ′. Obvious from the rules of Figure 11.

Proof (of Lemma 3.2). For the first part of the lemma, assume we have t typable to τ under
Γ in PolySeq. Then there exists a derivation tree T leading to Γ ` t :: τ in PolySeq. We show
that there exists a derivation tree T ′ in PolySeq* leading to Γ ` t :: τ as well.

The proof that such a T ′ exists is done inductively over the depth of the derivation tree T .
Thus we regard only the rule at the root of T and translate it into a rule of PolySeq*.

All rules from Figure 3 stay unchanged. Hence, it remains to consider the rules of Figure 4,
namely (TApp) and (SLet). They can be replaced by (TApp’) and (SLet’) from Figure 9,
respectively. The additional premises are fulfilled by Lemma 3.3.

Now, regard the second part of the lemma. Assume, we have given a derivation tree T ′ in
PolySeq*, leading to Γ ` t :: τ . We prove by induction on the depth of T ′, regarding only the
root rule, that there exists a derivation tree T in PolySeq, leading to |Γ| ` |t| :: |τ |. Obviously,
each rule from Figure 3 can remain and the ◦-marked versions of these rules from Figure 10 can
be substituted by the unmarked ones. Also (SLet’) can be replaced by (SLet), and (TApp’) as
well as (TApp’◦) by (TApp).

It remains a translation of (Sub). This rule can just be skipped by Lemma 3.4.

The next step is to consider the semantics of PolySeq*. Our aim is to take over the semantics
of PolySeq and we easily do it the following way:

Definition 3.5. Let Γ ` t :: τ in PolySeq* and θ a mapping from all type variables in Γ to
pcpos. The semantics of τ is defined by [[|τ |]]θ. Furthermore, with σ(x) ∈ [[|τ ′|]]θ for all x :: τ ′ in Γ,
the semantics of t is [[|t|]]θ,σ.

Having ensured the new system PolySeq* is equivalent to PolySeq in terms of typability
and semantics, and thus having it proved to be suitable as a refined system, we go on considering
parametricity, and state and prove the (refined) parametricity theorem for PolySeq*.

The typing rules ensure that terms of types τ1 →◦ τ2 and α, if α is marked by ◦ in the
corresponding typing environment or quantified by ∀◦, are not strictly evaluated, i.e. these types
do not appear as type τ1 in the rule (SLet’). Recalling the proof of Theorem 2.2 from the appendix,
we notice that only for τ1 in (SLet’) the logical relation has to be bottom-reflecting. Hence, for
the definition of the relational actions for ∀◦α.τ and τ1 →◦ τ2 we can omit the bottom-reflection
restrictions and define them as

∆∀◦α.τ,ρ = {(u, v) | ∀D1, D2 pcpos,R ∈ Rel◦(D1, D2). (u D1, v D2) ∈ ∆τ,ρ[α7→R]}
∆τ1→◦τ2,ρ = {(f, g) | ∀(a, b) ∈ ∆τ1,ρ. (f $ a, g $ b) ∈ ∆τ2,ρ} ,

where Rel◦(D1, D2) is the set of all strict and continuous (not necessarily bottom-reflecting) re-
lations between the pcpos D1 and D2. The other relational actions remain as in PolySeq (cf.
Figure 7).

Before we state the refined parametricity theorem, we have to formally prove that the logical
relation just defined is really bottom-reflecting for all types in Seqable and also that it is strict and
continuous for every type. Furthermore, the meaning of subtyping to the logical relation has to be
clarified. It turns out that a subtype relation between two types has a very natural interpretation

9

Section 3 Refining the Calculus

as the logical relation of the subtype being a subset of the logical relation of the supertype. The
next two lemmas state these properties.

We call a mapping ρ appropriate to a typing environment Γ if the type variables in Γ are the
domain of ρ and ρ(α) ∈ Rel for each αε ∈ Γ, as well as ρ(α) ∈ Rel◦ for each α◦ ∈ Γ, where Rel◦ is
the union of all Rel◦(D1, D2).

Lemma 3.6. Let τ be a type closed under the typing environment Γ. Then

1. ∆τ,ρ ∈ Rel◦ and

2. Γ ` τ ∈ Seqable⇒ ∆τ,ρ ∈ Rel

for each appropriate ρ.

Proof. The first statement of the lemma holds by induction on the type structure of τ , using the
relational actions defining the logical relation.

Regarding the second statement we do an induction over the rules of the Seqable-system (cf.
Figure 8). For the axioms (C-List), (C-Arrow) and (C-Var) the lemma is immediate from the
definition of the logical relation.

In the case (C-TAbs◦), we have the following proof:

∆∀◦α.τ,ρ ∈ Rel
⇔ {(u, v) | ∀D1, D2 pcpos,R ∈ Rel◦(D1, D2). (u D1, v D2) ∈ ∆τ,ρ[α7→R]} ∈ Rel
⇐ (∀(u, v) ∈ {(u, v) | ∀D1, D2 pcpos,R ∈ Rel◦(D1, D2). (u D1, v D2) ∈ ∆τ,ρ[α7→R]}

⇒ (u = ⊥ ⇔ v = ⊥))
⇐ ∀D1, D2 pcpos. ∃R ∈ Rel◦. (∆τ,ρ[α7→R] ∈ Rel)
⇐ ∀D1, D2 pcpos. ∃R ∈ Rel . (∆τ,ρ[α7→R] ∈ Rel)
⇐ ∀D1, D2 pcpos,R ∈ Rel(D1, D2). (∆τ,ρ[α7→R] ∈ Rel)
⇐ α,Γ ` τ ∈ Seqable

For (C-TAbs) we skip the fourth line of the reasoning and replace Rel◦ by Rel in the second
and third line, as well as ∀◦ by ∀ in the first line.

Lemma 3.7 (Subtyping). If τ1 � τ2, then ∆τ1,ρ ⊆ ∆τ2,ρ.

Proof. We prove inductively over the subtyping derivation and thus regard each rule in Figure 11
separately, assuming the premises as induction hypotheses and taking ρ as arbitrary, but such that
the type variables occurring freely in the inspected types form the domain of ρ.

For (S-Var) the result is immediate.
Regarding the rules (S-Arrowν,ν′), we first consider ν = ν′ = ◦. By

∆σ1→◦σ2,ρ ⊆ ∆τ1→◦τ2,ρ
⇔ {(f, g) | ∀(a, b) ∈ ∆σ1,ρ. (f $ a, g $ b) ∈ ∆σ2,ρ}

⊆ {(f, g) | ∀(a, b) ∈ ∆τ1,ρ. (f $ a, g $ b) ∈ ∆τ2,ρ}
⇐ ∆τ1,ρ ⊆ ∆σ1,ρ ∧∆σ2,ρ ⊆ ∆τ2,ρ

⇐ τ1 � σ1 ∧ σ2 � τ2

the induction hypotheses suffice. The same reasoning works for ν = ν′ = ε. The last case with
ν = ε and ν′ = ◦ is direct by the previous two and ∆τ→τ ′,ρ ⊆ ∆τ→◦τ ′,ρ, which is from the definition
of the logical relation.

For (S-Allν,ν′) we have a similar reasoning with the three distinct cases, using the definition
of the logical relation in each case. We consider only ν = ν′ = ◦, for ν = ν′ = ε is similar and the
last case is direct from the first two with ∆∀◦α.τ,ρ ⊆ ∆∀α.τ,ρ. For ν = ν′ = ◦ we have

∆∀◦α.τ1,ρ ⊆ ∆∀◦α.τ2,ρ
⇔ {(u, v) | ∀D1, D2 pcpos,R ∈ Rel◦(D1, D2). (u D1, v D2) ∈ ∆τ1,ρ[α 7→R]}

⊆ {(u, v) | ∀D1, D2 pcpos,R ∈ Rel◦(D1, D2). (u D1, v D2) ∈ ∆τ2,ρ[α7→R]}
⇐ ∀R ∈ Rel◦. (∆τ1,ρ[α→R] ⊆ ∆τ2,ρ[α→R])
⇐ τ1 � τ2 .

10

Finally, the case (S-List) is by

∆[σ],ρ ⊆ ∆[τ],ρ

⇔ list ∆σ,ρ ⊆ list ∆τ,ρ

⇐ ∆σ,ρ ⊆ ∆τ,ρ

⇐ σ � τ .

The following parametricity theorem is stronger than the one in PolySeq. for example, by
using ◦-marks we can type a term t to a type τ under an environment Γ, with ∆τ,ρ in PolySeq*
possibly a subset of the logical relation for unmarked, but elsewise syntactically equivalent, Γ, t,
and τ in PolySeq.

Theorem 3.8 (Parametricity). If Γ ` t :: τ in PolySeq*, then for every θ1, θ2, ρ, σ1, and σ2

such that

• for every α◦ occurring in Γ, ρ(α) ∈ Rel◦(θ1(α), θ2(α)),

• for every αε occurring in Γ, ρ(α) ∈ Rel(θ1(α), θ2(α)), and

• for every x :: τ ′ occurring in Γ, (σ1(x), σ2(x)) ∈ ∆τ ′,ρ ,

we have ([[|t|]]θ1,σ1 , [[|t|]]θ2,σ2) ∈ ∆τ,ρ .

Proof. The proof is very similar to the one of Theorem 2.2, given in the appendix. We concentrate
only on the interesting, differing cases.

In the case (Cons) we use Lemma 3.6(1) instead of Lemma 2.1. Regarding (Absν) for ν ∈
{◦, ε}, the reasoning is, independently of ν, similar to the one for (Abs) in the proof of Theorem 2.2.
The same holds for (Appν) and (App).

In the cases
αν ,Γ ` t :: τ

(TAbsν)ν∈{◦,ε}
Γ ` (Λα.t) :: ∀να.τ

,

for ν = ◦ and ν = ε we have

([[|Λα.t|]]θ1,σ1 , [[|Λα.t|]]θ2,σ2) ∈ ∆∀να.τ,ρ
⇔ (λD1.[[|t|]]θ1[α 7→D1],σ1 , λD2.[[|t|]]θ2[α7→D2],σ2) ∈ ∆∀να.τ,ρ
⇔ ∀D1, D2 pcpos,R ∈ Relν(D1, D2).

([[|t|]]θ1[α 7→D1],σ1 , [[|t|]]θ2[α7→D2],σ2) ∈ ∆τ,ρ[α7→R] ,

where Relε = Rel by convention.
In the cases

(if ν = ε then Γ ` τ2 ∈ Seqable) Γ ` t :: ∀να.τ1
(TApp’ν)ν∈{◦,ε}

Γ ` (tτ2) :: τ1[τ2/α]
,

we have
([[|tτ2 |]]θ1,σ1 , [[|tτ2 |]]θ2,σ2) ∈ ∆τ1[τ2/α],ρ

⇔ ([[|t|]]θ1,σ1 [[|τ2|]]θ1 , [[|t|]]θ2,σ2 [[|τ2|]]θ2) ∈ ∆τ1,ρ[α7→∆τ2,ρ]

⇐ ∀D1, D2 pcpos,R ∈ Relν(D1, D2).
([[|t|]]θ1,σ1 D1, [[|t|]]θ2,σ2 D2) ∈ ∆τ1,ρ[α7→R]

⇔ ([[|t|]]θ1,σ1 , [[|t|]]θ2,σ2) ∈ ∆∀να.τ1,ρ ,

independently of ν, and so the induction hypothesis suffices.
Note that the equivalence ∆τ1[τ2/α],ρ = ∆τ1,ρ[α 7→∆τ2,ρ], used in the first step, holds by an easy

induction on τ1. Also note that the consecutive step uses ∆τ2,ρ ∈ Rel◦ (for ν = ◦), as justified by
Lemma 3.6(1), and ∆τ2,ρ ∈ Rel for ν = ε, as justified by the additional premise in (TApp’ε) and
Lemma 3.6(2).

For (Fixν), ν ∈ {◦, ε}, the reasoning is similar to the one for (Fix) in the proof of Theorem 2.2.
In the case

Γ ` t :: τ1 τ1 � τ2
(Sub)

Γ ` t :: τ2
,

11

Section 4 Removing the (Sub)-Rule

we reason by the set inclusion ∆τ1,ρ ⊆ ∆τ2,ρ, which is true as shown in Lemma 3.7:

([[|t|]]θ1,σ1 , [[|t|]]θ2,σ2) ∈ ∆τ2,ρ

⇐ ([[|t|]]θ1,σ1 , [[|t|]]θ2,σ2) ∈ ∆τ1,ρ .

Finally, in the case

Γ ` τ1 ∈ Seqable Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2
(SLet’)

Γ ` (let! x = t1 in t2) :: τ2
,

we have to show that the values{
[[|t2|]]θ1,σ1[x 7→a] if [[|t1|]]θ1,σ1 = a 6= ⊥
⊥ if [[|t1|]]θ1,σ1 = ⊥

and {
[[|t2|]]θ2,σ2[x 7→b] if [[|t1|]]θ2,σ2 = b 6= ⊥
⊥ if [[|t1|]]θ2,σ2 = ⊥

are related by ∆τ2,ρ. By the induction hypothesis ([[|t1|]]θ1,σ1 , [[|t1|]]θ2,σ2) ∈ ∆τ1,ρ and bottom-
reflection of ∆τ1,ρ, obtained by the premise Γ ` τ1 ∈ Seqable and Lemma 3.6(2), it suffices to
consider the following two cases:

1. [[|t1|]]θ1,σ1 = a 6= ⊥ and [[|t1|]]θ2,σ2 = b 6= ⊥, in which case the induction hypothesis that for
every (a, b) ∈ ∆τ1,ρ,

([[|t2|]]θ1,σ1[x 7→a], [[|t2|]]θ2,σ2[x 7→b]) ∈ ∆τ2,ρ ,

suffices, and

2. [[|t1|]]θ1,σ1 = ⊥ and [[|t1|]]θ2,σ2 = ⊥, in which case we have to show (⊥,⊥) ∈ ∆τ2,ρ, which
follows from the strictness of ∆τ2,ρ (cf. Lemma 3.6(1)).

This completes the proof.

Let us finish this section by an example for a refined type and the corresponding free theorem.
Recall the function foldl ′′ from the introduction. It can be typed to ∀◦a.∀b.(a →◦ b → a) → a →
[b] → a in PolySeq*, and the corresponding free theorem states equation (2) if, additionally to
the conditions in the introduction, g is total and c z = ⊥ iff c′ (f z) = ⊥ holds for all z. Compared
to the “secure” free theorem from the beginning of this section we do not request f to be total
and c = ⊥ iff c′ = ⊥ anymore. Hence we get rid of unnecessary restrictions, and gain a stronger
and still “secure” free theorem for foldl ′′.

4 Removing the (Sub)-Rule

The calculus PolySeq* with the refined type system, presented in the previous section, enables
us to release some restrictions on free theorems, if the use of strict evaluation is localized by the
type. Thus it allows for stronger free theorems compared to the standard calculus PolySeq. Our
further goal is to automatically type terms with standard type annotations like in PolySeq to a
refined type of PolySeq*. But, unfortunately, PolySeq* is not very suitable for a use as typing
algorithm. The reason is the (Sub) rule, being in competition with all other rules. Hence, we
are looking for a calculus with the same type system and the same terms typable as in the just
presented PolySeq*, but without the rule (Sub).

The idea is to look at the type derivation trees constructible by the typing rules of PolySeq*
and consider where subtyping is really necessary and where it can be shifted to another place in
the derivation tree. If an application of (Sub) is forced to be done after some rule, we manipulate
that rule to integrate the transformation of (Sub) directly.

The resulting calculus has for each typing rule of PolySeq*, beside (Sub), a corresponding
rule. The subtyping and the Seqable rule system remain unchanged. We call the new calculus

12

τ � τ ′
(Var’)

Γ, x :: τ ` x :: τ ′
τ � τ ′

(Nil’)
Γ ` []τ :: [τ ′]

Γ ` t1 :: τ Γ ` t2 :: [τ]
(Cons)

Γ ` (t1 : t2) :: [τ]

Γ ` t :: [τ1] Γ ` t1 :: τ2 Γ, x1 :: τ1, x2 :: [τ1] ` t2 :: τ2
(LCase)

Γ ` (case t of {[]→ t1 ; x1 : x2 → t2}) :: τ2

Γ, x :: τ1 ` t :: τ2 τ ′1 � τ1 (Abs’ν)ν∈{◦,ε}
Γ ` (λx :: τ1.t) :: τ ′1 →ν τ2

αν ,Γ ` t :: τ
(TAbsν)ν∈{◦,ε}

Γ ` (Λα.t) :: ∀να.τ

Γ ` t1 :: τ1 →ν τ2 Γ ` t2 :: τ1 (Appν)ν∈{◦,ε}
Γ ` (t1 t2) :: τ2

(if ν = ε then Γ ` τ2 ∈ Seqable) Γ ` t :: ∀να.τ1 τ1[τ2/α] � τ3
(TApp”ν)ν∈{◦,ε}

Γ ` (tτ2) :: τ3

Γ ` t :: τ →ν τ τ � τ ′
(Fix’ν)ν∈{◦,ε}

Γ ` fix t :: τ ′

Γ ` τ1 ∈ Seqable Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2
(SLet’)

Γ ` (let! x = t1 in t2) :: τ2

Figure 12: The Typing Rules in PolySeq+.

13

Section 4 Removing the (Sub)-Rule

PolySeq+. Its typing rules are given in Figure 12. For brevity we use the already introduced
parameterization of rules.

Comparing the typing rules of PolySeq* and PolySeq+, we can show that the terms typable
in PolySeq* are also typable in PolySeq+ and vice versa.

Lemma 4.1. If t is typable to τ under Γ in PolySeq*, then it is typable to the same type τ under
the same environment Γ in PolySeq+, and conversely.

For the proof of Lemma 4.1, we need the following auxiliary lemma.

Lemma 4.2. The subtype relation �, given through the rules in Figure 11, is reflexive and tran-
sitive.

Proof. First we prove reflexivity. We use induction on the type structure of τ . If τ is a type
variable, it follows immediately by the axiom (S-Var). For ∀να.τ (ν = ◦, ε), it is by (S-Allν,ν)
and the induction hypothesis. Similarly, we have reflexivity for types of the structure τ1 →ν τ2
(ν = ◦, ε), using (S-Arrowν,ν), and for [τ], using (S-List).

For transitivity we do an induction on the subtyping rules. For (S-Var) the result is immediate.
Regarding (S-Arrowν,ν′) we have τ1 →νa τ ′1 � τ2 →νb τ ′2 and τ2 →νb τ ′2 � τ3 →νc τ ′3 as premises.
By applying (S-Arrowν,ν′) backwards, we get: τ2 � τ1, τ ′1 � τ ′2, νb 6 νa and τ3 � τ2, τ ′2 � τ ′3, νc 6
νb. Regarding the induction hypotheses and the already mentioned order ◦ < ε on {◦, ε}, we have
τ3 � τ1, τ ′1 � τ ′3, νc 6 νa and apply (S-Arrowν,ν′) forwards to finish the proof.

The same scheme works for (S-Allν,ν′) and (S-List).

Proof (of Lemma 4.1). First assume t is typable to τ under Γ in PolySeq*. Then there is a
derivation tree T leading to Γ ` t :: τ . We give, inductively over the number of typing rules in T
different from (Sub), a translation of T into a valid derivation tree T + in PolySeq+. For this it
suffices to regard only the root of the derivation tree until the first appearance of a rule different
from (Sub). Note that by transitivity of �, stated in Lemma 4.2, we can transform a series of
(Sub) rules into a single (Sub) rule and by reflexivity of �, also stated in Lemma 4.2, we can
assume the root of each derivation tree T to be (Sub). Hence, it remains only to consider the
case with (Sub) the root of the derivation tree T preceded by a rule T different from (Sub). We
consider all different possibilities for T , giving a rule transformation for each sequence of T and
(Sub).

Regarding (Var) and (Nil) we add the restrictions as shown in Figure 12. This clearly replaces
the application of (Sub) after these rules.

In the case (Cons) we replace

Γ ` t1 :: τ Γ ` t2 :: [τ]
(Cons)

Γ ` (t1 : t2) :: [τ] [τ] � τ ′′
(Sub)

Γ ` (t1 : t2) :: τ ′′

by
Γ ` t1 :: τ τ � τ ′

(Sub)
Γ ` t1 :: τ ′

Γ ` t2 :: [τ] [τ] � [τ ′]
(Sub)

Γ ` t2 :: [τ ′]
(Cons)

Γ ` (t1 : t2) :: [τ ′]

The replacement of τ ′′ by [τ ′] is not a limitation since, by the subtyping rules, only types with the
same structure can be in a subtype relationship (cf. Lemma 3.4).

In the case (LCase) we replace

Γ ` t :: [τ1] Γ ` t1 :: τ2 Γ, x1 :: τ1, x2 :: [τ1] ` t2 :: τ2
(LCase)

Γ ` (case t of {[]→ t1 ; x1 : x2 → t2}) :: τ2 τ2 � τ ′2
(Sub)

Γ ` (case t of {[]→ t1 ; x1 : x2 → t2}) :: τ ′2

14

by

Γ ` t :: [τ1]

Γ ` t1 :: τ2 τ2 � τ ′2 (Sub)
Γ ` t1 :: τ ′2

Γ, x1 :: τ1, x2 :: [τ1] ` t2 :: τ2

τ2 � τ ′2 (Sub)
Γ, x1 :: τ1, x2 :: [τ1] ` t2 :: τ ′2

(LCase)
Γ ` (case t of {[]→ t1 ; x1 : x2 → t2}) :: τ ′2

For the rules (Absν), ν ∈ {◦, ε}, we transform

Γ, x :: τ1 ` t :: τ2
(Absν)

Γ ` (λx :: τ1.t) :: τ1 →ν τ2 τ1 →ν τ2 � τ ′1 →ν′ τ ′2
(Sub)

Γ ` (λx :: τ1.t) :: τ ′1 →ν′ τ ′2

into
Γ, x :: τ1 ` t :: τ2 τ2 � τ ′2

(Sub)
Γ, x :: τ1 ` t :: τ ′2 τ ′1 � τ1

(Abs’ν′)
Γ ` (λx :: τ1.t) :: τ ′1 →ν′ τ ′2

Regarding the rule (S-Arrowν,ν′), we see that the two versions are equivalent. In the first version
the conclusion of (S-Arrowν,ν′) is used and in the second one the premises are checked.

In the cases (Appν), ν ∈ {◦, ε}, we transform

Γ ` t1 :: τ1 →ν τ2 Γ ` t2 :: τ1 (Appν)
Γ ` (t1 t2) :: τ2 τ2 � τ ′2

(Sub)
Γ ` (t1 t2) :: τ ′2

into
Γ ` t1 :: τ1 →ν τ2 τ1 →ν τ2 � τ1 →ν τ ′2 (Sub)

Γ ` t1 :: τ1 →ν τ ′2 Γ ` t2 :: τ1
(Appν)

Γ ` (t1 t2) :: τ ′2

By the subtyping rule (S-Arrowν,ν) and reflexivity of subtyping, the different subtyping condi-
tions in the original and the transformed derivation tree parts are equivalent.

For (TAbsν), ν ∈ {◦, ε}, we transform

αν ,Γ ` t :: τ
(TAbsν)

Γ ` (Λα.t) :: ∀να.τ ∀να.τ � ∀ν
′
.τ ′

(Sub)
Γ ` (Λα.t) :: ∀ν

′
.τ ′

into
αν
′
,Γ ` t :: τ τ � τ ′

(Sub)
αν
′
,Γ ` t :: τ ′

(TAbsν′)
Γ ` (Λα.t) :: ∀ν

′
α.τ ′

where we set the subtype condition in the original tree to ∀να.τ � ∀ν′α.τ ′, which is no restriction
for ∀να.τ is fix and (S-Allν,ν′), with ν 6 ν′, is the only suitable subtyping rule, able to fire only if
the supertype is of the given structure. The fact ν 6 ν′ is used to validate the transformation, for
it excludes the configuration with ν = ε and ν′ = ◦. At first sight it seems that we lost the former
option of α◦ in the premise and ∀εα in the conclusion. But as all terms typable under α◦,Γ are
also typable under αε,Γ (α is only needed in the Seqable-check), there is nothing lost.

In the cases (TApp’ν), ν ∈ {◦, ε}, we have to introduce a new premise and transform

(if ν = ε then Γ ` τ2 ∈ Seqable) Γ ` t :: ∀να.τ1
(TApp’ν)

Γ ` (tτ2) :: τ1[τ2/α] τ1[τ2/α] � τ ′
(Sub)

Γ ` (tτ2) :: τ ′

into
(if ν = ε then Γ ` τ2 ∈ Seqable) Γ ` t :: ∀να.τ1 τ1[τ2/α] � τ ′

(TApp”ν)
Γ ` (tτ2) :: τ ′

15

Section 5 PolySeqC- Getting All Permissible Types

Regarding (Fixν), ν ∈ {◦, ε}, we melt (Sub) together with (Fixν) by transforming

Γ ` t :: τ →ν τ (Fixν)
Γ ` fix t :: τ τ � τ ′

(Sub)
Γ ` fix t :: τ ′

into
Γ ` t :: τ →ν τ τ � τ ′

(Fix’ν)
Γ ` fix t :: τ ′

Finally, in the case (SLet’) we transform

Γ ` τ1 ∈ Seqable Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2
(SLet’)

Γ ` (let! x = t1 in t2) :: τ2 τ2 � τ ′2
(Sub)

Γ ` (let! x = t1 in t2) :: τ ′2

into

Γ ` τ1 ∈ Seqable Γ ` t1 :: τ1

Γ, x :: τ1 ` t2 :: τ2 τ2 � τ ′2
(Sub)

Γ, x :: τ1 ` t2 :: τ ′2
(SLet’)

Γ ` (let! x = t1 in t2) :: τ ′2

To transform a valid derivation tree in PolySeq+ into a valid one in PolySeq*, we leave the
rules that are equal in both rule sets unchanged and use the just given transformations backwards
to replace the changed rules back by the original ones in PolySeq* combined with an application
of (Sub).

This completes the proof.

With the calculus PolySeq+ we made a big step towards a calculus with a typing rule system
suitable to set up a type refinement algorithm. But there still remain some difficulties due to the
fact that one term is usually typable to more than one refined type. That causes a whole family
of derivation trees for a single term. Hence, PolySeq+ is only an intermediate step on the way
to a calculus whose typing rule system is directly interpretable as a type refinement algorithm. A
calculus whose typing rule statements assign all refined types to a term at one time is presented
in the next section.

5 PolySeqC- Getting All Permissible Types

In the previous sections we presented the calculi PolySeq* and PolySeq+, both allowing refined
typing for all terms typable in the original calculus PolySeq. The typing rules of these calculi are
declarative, but the intended use will be an algorithm that takes a closed term t with standard
type annotations as in PolySeq and returns all, or better all minimal (in the sense of the minimal
logical relation, and hence the strongest free theorems) refined types t is typable to (to be more
accurate: for some choice of marks in the type annotations of t). Or, more generally, the same
setting with t closed under a given standard PolySeq typing environment Γ has to be handled.

One way to solve this problem is to add concrete marks to Γ and t. Then we can regard
PolySeq+ as an algorithm that takes a typing environment Γ and a term t with concrete marks
added and that tries to find all possible typing derivations for t under Γ by applying the typing rules
of PolySeq+ backwards. Afterwards, it constructs the sought-after types by the just constructed
typing derivations. There will be multiple typing derivations since sometimes we have the choice
between two rules, one introducing ε, the other ◦, as a mark. Also the construction of different
sub- and supertypes by the subtyping system leads to multiple derivations. Additionally, we would
have to run the algorithm with all possible initial choices for marks on the given standard Γ and
t. To make a long story short: doing things this way seems to be very cumbersome.

Alternatively, avoiding the production of many trees and several runs with different inputs, we
can switch to variable marks at type variables in Γ and at all arrows and ∀-quantifiers in each type
annotation in Γ and t, and in the constructed type τ . This particularly avoids the parameterization

16

〈τ̇ � · 〉V (C, τ̇ ′)
(VarC)

〈Γ̇, x :: τ̇ ` x〉V (C, τ̇ ′)

〈τ̇ � · 〉V (C, τ̇ ′)
(NilC)

〈Γ̇ ` []τ̇ 〉V (C, [τ̇ ′])

〈Γ̇ ` ṫ1〉V (C1, τ̇) 〈Γ̇ ` ṫ2〉V (C2, [τ̇ ′]) 〈τ̇ = τ̇ ′〉V C3
(ConsC)

〈Γ̇ ` (ṫ1 : ṫ2)〉V (C1 ∧ C2 ∧ C3, [τ̇])

〈Γ̇ ` ṫ〉V (C1, [τ̇1]) 〈Γ ` ṫ1〉V (C2, τ̇2)

〈Γ̇, x1 :: τ̇1, x2 :: [τ̇1] ` ṫ2〉V (C3, τ̇ ′2) 〈τ̇2 = τ̇ ′2〉V C4
(LCaseC)

〈Γ̇ ` (case ṫ of {[]→ ṫ1 ; x1 : x2 → ṫ2})〉V (C1 ∧ C2 ∧ C3 ∧ C4, τ̇2)

〈Γ̇, x :: τ̇1 ` ṫ〉V (C1, τ̇2) 〈 · � τ̇1〉V (C2, τ̇ ′1)
(AbsC)

〈Γ̇ ` (λx :: τ̇1.ṫ)〉V (C1 ∧ C2, τ̇ ′1 →ν τ̇2)

〈Γ̇ ` ṫ1〉V (C1, τ̇1 →ν τ̇2) 〈Γ̇ ` ṫ2〉V (C2, τ̇ ′1) 〈τ̇1 = τ̇ ′1〉V C3
(AppC)

〈Γ̇ ` (ṫ1 ṫ2)〉V (C1 ∧ C2 ∧ C3, τ̇2)

〈αν , Γ̇ ` ṫ〉V (C, τ̇)
(TAbsC)

〈Γ̇ ` (Λα.ṫ)〉V (C, ∀να.τ̇)

〈Γ̇ ` τ̇2 ∈ Seqable〉V C1

〈Γ̇ ` ṫ〉V (C2, ∀να.τ̇1) 〈τ̇1[τ̇2/α] � · 〉V (C3, τ̇3)
(TAppC)

〈Γ̇ ` (ṫτ̇2)〉V (((ν = ε)⇒ (C1)) ∧ C2 ∧ C3, τ̇3)

〈Γ̇ ` ṫ〉V (C1, τ̇ →ν τ̇ ′) 〈τ̇ = τ̇ ′〉V C2 〈τ̇ � · 〉V (C3, ˙τ ′′)
(FixC)

〈Γ̇ ` fix ṫ〉V (C1 ∧ C2 ∧ C3, ˙τ ′′)

〈Γ̇ ` ṫ1〉V (C1, τ̇1)

〈Γ̇ ` τ̇1 ∈ Seqable〉V C2 〈Γ̇, x :: τ̇1 ` ṫ2〉V (C3, τ̇2)
(SLetC)

〈Γ̇ ` (let! x = ṫ1 in ṫ2)〉V (C1 ∧ C2 ∧ C3, τ̇2)

Figure 13: The Conditional Typing Rules in PolySeqC .

of rules as used in PolySeq* and PolySeq+ and thereby eliminates all competition between
different rules, allowing the interpretation of the arising rule system as a deterministic algorithm.

This solution is realized by the calculus PolySeqC , presented in the current section, which
has the same set of typable terms as PolySeq+ and PolySeq*, but in the first place states
conditional typability. We switch to parameterized terms, types, and typing environments that use
variables instead of concrete ε- and ◦-marks. In what follows, parameterized items are dotted to
be distinguishable from concrete ones.

A statement about conditional typability is of the form

〈Γ̇ ` ṫ〉V (C, τ̇)

where C is a propositional logic formula combining constraints on mark variables ν ∈ V , where V
is a countable set of variables, disjoint from the sets of term and type variables. The typing rules
for conditional typability are given in Figure 13 and rules of the subsystems, stating conditional
class membership in Seqable, subtyping, and equality, are shown in Figures 14, 15, and 16.

Although the rules are still declarative, they are now written in a slightly different style with all
statements structured as input V output to emphasize their algorithmic nature and the intended
use. Note that due to this style, the former subtyping rules are now split into rules for subtype

17

Section 5 PolySeqC- Getting All Permissible Types

〈Γ̇ ` [τ̇] ∈ Seqable〉V True (C-ListC)

〈Γ̇ ` τ̇1 →ν τ̇2 ∈ Seqable〉V (ν = ε) (C-ArrowC)

αν ∈ Γ̇
(C-VarC)

〈Γ̇ ` α ∈ Seqable〉V (ν = ε)

〈αε, Γ̇ ` τ̇ ∈ Seqable〉V C
(C-TAbsC)

〈Γ̇ ` ∀αν .τ̇ ∈ Seqable〉V C

Figure 14: The Conditional Class Membership Rules for Seqable in PolySeqC .

〈α � · 〉V (True, α) (S-VarC1) 〈 · � α〉V (True, α) (S-VarC2)

〈 · � σ̇1〉V (C1, τ̇1) 〈σ̇2 � · 〉V (C2, τ̇2)
(S-ArrowC

1)
〈σ̇1 →ν σ̇2 � · 〉V (C1 ∧ C2 ∧ (ν′ 6 ν), τ̇1 →ν′ τ̇2)

〈τ̇1 � · 〉V (C1, σ̇1) 〈 · � τ̇2〉V (C2, σ̇2)
(S-ArrowC

2)
〈 · � τ̇1 →ν′ τ̇2〉V (C1 ∧ C2 ∧ (ν′ 6 ν), σ̇1 →ν σ̇2)

〈τ̇1 � · 〉V (C, τ̇2)
(S-AllC1)

〈∀να.τ̇1 � · 〉V (C ∧ (ν 6 ν′), ∀ν
′
α.τ̇2)

〈 · � τ̇2〉V (C, τ̇1)
(S-AllC2)

〈 · � ∀ν
′
α.τ̇2〉V (C ∧ (ν 6 ν′), ∀να.τ̇1)

〈τ̇1 � · 〉V (C, τ̇2)
(S-ListC1)〈[τ̇1] � · 〉V (C, [τ̇2])

〈 · � τ̇2〉V (C, τ̇1)
(S-ListC2)〈 · � [τ̇2]〉V (C, [τ̇1])

Figure 15: The Conditional Subtyping Rules in PolySeqC .

〈α = α〉V True (E-VarC)

〈σ̇1 = τ̇1〉V C1 〈σ̇2 = τ̇2〉V C2
(E-ArrowC)

〈σ̇1 →ν σ̇2 = τ̇1 →ν′ τ̇2〉V C1 ∧ C2 ∧ (ν = ν′)

〈τ̇1 = τ̇2〉V C
(E-AllC)

〈∀να.τ̇1 = ∀ν
′
α.τ̇2〉V C ∧ (ν = ν′)

〈τ̇1 = τ̇2〉V C
(E-ListC)〈[τ̇1] = [τ̇2]〉V C

Figure 16: The Conditional Equality Rules in PolySeqC .

18

and for supertype search, both with constraint generation. Also equality of types, not explicitly
present as a rule system before, is now expressed as conditional equality (cf. Figure 16).

Since terms, types, and typing environments in PolySeqC are parameterized at the marks, we
need a way of instantiating them to gain concrete items. The next definition introduces the mark
replacement mapping for instantiation and also makes the notions concrete and parameterized
precise.

Definition 5.1. A term, type, or typing environment is called parameterized if all marks at type
variables, ∀-quantifiers, and arrows are variables. It is called concrete if all the marks are concrete,
i.e. either ◦ or ε.

A mapping % : Vf → L from a finite subset Vf of the set of variables V into the set of marks
L = {◦, ε} is called a mark replacement.

With the help of mark replacements, we define typability in PolySeqC . Note that we keep
the convention that concrete items are denoted without a dot on top, while parameterized items
are dotted. Hence, both can be distinguished from each other and we do not explicitly mention
whether they are concrete or parameterized.

Definition 5.2 (typability in PolySeqC). A term t is typable to τ under Γ in PolySeqC if
there exist Γ̇, ṫ, τ̇ , C, and %, such that Γ̇% = Γ, ṫ% = t, τ̇% = τ , C% = True, and 〈Γ̇ ` ṫ〉 V (C, τ̇)
holds in PolySeqC .

Knowing how to define typability in PolySeqC , we can state the main requirement for the new
calculus: typability in PolySeqC agrees with typability in PolySeq+.

Theorem 5.3. A term t is typable to a type τ under a typing environment Γ in PolySeqC iff it is
typable to the same τ under the same Γ in PolySeq+.

Apart from an example of the algorithmic use of the typing rules of PolySeqC towards the
end, the remaining part of this section deals with the proof of Theorem 5.3.

The proof is split into the two directions. For each, we break it down into a couple of lemmas,
each regarding a subsystem of the typing rules. But beforehand, some more properties of mark
replacements and parameterized items need to be defined, and some auxiliary lemmas are required.

Definition 5.4. Let κ̇ be a parameterized term, type, or typing environment. The set of all
variables used as marks in κ̇ or a constraint C is called mark variable set of κ̇ or C, and is denoted
by v(κ̇) or v(C), respectively. Furthermore, κ̇ is said to be general if each variable in v(κ̇) occurs
just once in κ̇.

If v(κ̇) ⊆ dom(%) for a mark replacement %, we say that κ̇ is closed under %. A mark replacement
% is called minimal with respect to κ̇ if v(κ̇) = dom(%).

Similarly, we call a constraint C closed under % if v(C) ⊆ dom(%), and % minimal with respect
to C if v(C) = dom(%).

If κ̇ (C) is closed under a mark replacement %, the result of the application of % to κ̇ (C) is
called an instantiation of κ̇ (C) by %, denoted by κ̇% (C%), leading to a concrete term, type, or
typing environment (propositional logic sentence), respectively.

If κ is a concrete term, type, or typing environment, then we call κ̇ a parameterization of κ if
there exists a mark replacement % with κ̇% = κ.

Two parameterized terms, types, or typing environments κ̇ and κ̇′ are disjoint if v(κ̇)∩v(κ̇′) = ∅.
Similarly, two mark replacements % and %′ are disjoint if their domains are. They are compatible
if there exists no ν ∈ V such that ν ∈ dom(%) ∩ dom(%′) and %(ν) 6= %′(ν).

Let %1 and %2 be two compatible mark replacements. The mark replacement % = %1 ∪ %2 is
defined as the union of the graphs of %1 and %2 and is called union of %1 and %2.

Lemma 5.5. For all concrete terms, types, or typing environments κ1, . . . , κn, n ∈ N, there ex-
ist general, disjoint parameterizations κ̇, . . . , κ̇n and a mark replacement %, such that (κ̇1)% =
κ1, . . . , (κ̇n)% = κn.

19

Section 5 PolySeqC- Getting All Permissible Types

Proof. We construct κ̇1, . . . , κ̇n and the graph of % by starting with % := ∅ and replacing each
concrete mark m in κ1 by a variable ν with ν /∈ dom(%), extending % by {ν 7→ m}. Afterwards we
repeat this for κ2, . . . , κn, taking again only variables not already present in dom(%).

Now we can start considering the different subsystems necessary in a typing derivation. First,
we analyze the rule system for conditional class membership in Seqable, shown in Figure 14.

Lemma 5.6. For every parameterized Γ̇, and τ̇ closed under Γ̇, there exists some C with 〈Γ̇ ` τ̇ ∈
Seqable〉V C and v(C) ⊆ v(Γ̇) ∪ v(τ̇).

Proof. The proof is by induction on the type structure of τ̇ .

Lemma 5.7. For all Γ, τ with Γ ` τ ∈ Seqable, there exist pairwise disjoint, general Γ̇ and τ̇ , a
constraint C, and a mark replacement %, such that Γ̇% = Γ, τ̇% = τ , C% = True, and 〈Γ̇ ` τ̇ ∈
Seqable〉V C.

Proof. We prove over the depth of the derivation tree of Γ ` τ ∈ Seqable, regarding only the last
derivation rule, trying to translate it into a conditional class membership rule in PolySeqC . For
(C-List), Lemma 5.5 suffices to get a parameterization that fulfills (C-ListC) and also to obtain
a suitable %.

In the case (C-Arrow) we use again Lemma 5.5 and extend the gained % by a new entry,
mapping the variable ν (w.l.o.g. not yet in the domain) to ε.

For (C-Var) we take a general parameterization Γ̇ of Γ and a corresponding mark replacement
%. By the premise of (C-Var), it has to map the mark variable at α to ε. Hence, we have
(C-VarC) in PolySeqC as derivation for 〈Γ̇ ` α ∈ Seqable〉V (ν = ε) and (ν = ε)% = True.

Regarding (C-TAbsε), we consider the premise αε,Γ ` τ ∈ Seqable. By the induction hy-
pothesis, we know that there exist 〈αε, Γ̇ ` τ̇ ∈ Seqable〉 V C and %p with Γ̇%p = Γ, τ̇%p = τ ,
C%p = True.

By (C-TAbsC) we also have 〈Γ̇ ` ∀αν .τ̇ ∈ Seqable〉 V C, and w.l.o.g. we can assume ν /∈
dom(%p) and take % = %p ∪ {ν 7→ ε}. The case (CTAbs◦) is similar.

Lemma 5.8. For all Γ̇, τ̇ , C, and % with 〈Γ̇ ` τ̇ ∈ Seqable〉 V C, dom(%) ⊇ v(Γ̇) ∪ v(τ̇), and
C% = True, we have Γ̇% ` τ̇% ∈ Seqable.

Proof. The proof is by induction on the derivation tree of 〈Γ̇ ` τ̇ ∈ Seqable〉 V C, regarding
just the rule at the root node, translating it into a class membership rule from Figure 8 that is
applicable for the concrete instantiations of Γ̇ and τ̇ obtained by the application of each permitted
%, respectively. For (C-ListC) the result is immediate by taking (C-List). Regarding (C-VarC),
it can be translated into (C-Var), since %(ν) = ε, and hence the premise of (C-Var), is ensured
by C% = True. The same holds for (C-ArrowC) when translated to (C-Arrow).

For (C-TAbsC) there are two possibilities, since ν /∈ dom(C), and hence it can be mapped
either to ◦ or to ε by a % with C% = True. But at least, by dom(%) ⊇ v(Γ̇) ∪ v(τ̇), it has to be
in the domain of each % under consideration. If % maps ν to ε, we can translate (C-TAbsC) into
(C-TAbs), otherwise into (C-TAbs◦). A last important fact is that the premise of (C-TAbsC)
does not have a variable mark at α in the typing environment, and thus the typing environment
does not satisfy our definition of “parameterized”. We can solve this by replacing the ε-mark at α
by ν′, and substituting C by C ′ := C ∧ (ν′ = ε).

Next, we regard the system for subtyping, shown in Figure 15.

Lemma 5.9. For all τ , τ ′ with τ � τ ′ there exist general, disjoint τ̇ , τ̇ ′, a constraint C, and a mark
replacement %, such that τ̇% = τ , τ̇ ′% = τ ′, C% = True, 〈τ̇ � · 〉 V (C, τ̇ ′), and 〈 · � τ̇ ′〉 V (C, τ̇)
hold.

20

Proof. The proof is by induction on the depth of the derivation tree of τ � τ ′ (cf. Figure 11).
Hence, we regard just the rule at the root node, assuming Lemma 5.9 holds for all premises of
that rule. The case (S-Var) is immediate by Lemma 5.5 and (S-VarC1) and (S-VarC2), because
C% = True independently of the concrete mark replacement %.

In all other cases the induction hypotheses suffice. As example, we regard the rule fam-
ily (S-Arrowν,ν′)ν,ν′∈{◦,ε}, ν′6ν . By the induction hypotheses, we have 〈 · � σ̇1〉V (C1, τ̇1),
〈τ̇1 � · 〉V (C1, σ̇1), 〈σ̇2 � · 〉V (C2, τ̇2), and 〈 · � τ̇2〉V (C2, σ̇2), which are exactly the premises
for (S-ArrowC

1) and (S-ArrowC
2). Further we know % and %′, w.l.o.g. disjoint, such that

Lemma 5.9 is fulfilled for both premises. Hence, if we apply (S-ArrowC
1) and (S-ArrowC

2),
build the union of % and %′, and add the appropriate entries for ν and ν′, we are done. The new
constraint C1∧C2∧(ν′ 6 ν) is obviously fulfilled for all three concrete (S-Arrowν,ν′)ν,ν′∈{◦,ε}, ν′6ν
rules.

Lemma 5.10. For all τ̇ , τ̇ ′, C, and % with 〈τ̇ � · 〉 V (C, τ̇ ′) or 〈 · � τ̇ ′〉 V (C, τ̇), dom(%) ⊇
v(τ̇) ∪ v(τ̇ ′), and C% = True, we have τ̇% � τ̇ ′%.

Proof. Induction over the depth of the derivation tree for 〈τ̇ � · 〉V (C, τ̇ ′) or 〈 · � τ̇ ′〉V (C, τ̇).

For the system of equality checks, shown in Figure 16, we state the next two lemmas.

Lemma 5.11. For all τ , τ ′ with τ = τ ′, there exist general, disjoint parameterizations τ̇ , τ̇ ′, a
constraint C, and a mark replacement %, such that τ̇% = τ , τ̇ ′% = τ ′, C% = True, and 〈τ̇ = τ̇ ′〉V C.

Proof. The proof is by induction on the type structure of τ , which is also the type structure of
τ ′. For τ being a type variable, the lemma is immediately true by (E-VarC) and % = ∅.

Because all other cases are very similar to each other, we regard only τ = τ1 →◦ τ2, and hence
τ ′ = τ ′1 →◦ τ ′2. By the induction hypotheses, there exist τ̇1, τ̇ ′1, τ̇2, τ̇ ′2, and %1, %2, w.l.o.g. disjoint,
such that 〈τ̇1 = τ̇ ′1〉V C1 and 〈τ̇2 = τ̇ ′2〉V C2 hold, as well as (τ̇1)%1 = τ1, (τ̇ ′1)%1 = τ ′1, (τ̇2)%2 = τ2,
(τ̇ ′2)%2 = τ ′2, (C1)%1 = True, and (C2)%2 = True. Hence, we can apply (E-ArrowC). Taking
% = %1 ∪ %2 extended by the entries ν 7→ ◦ and ν′ 7→ ◦, we are done.

Lemma 5.12. For all τ̇ , τ̇ ′, C, and % with 〈τ̇ = τ̇ ′〉V C, dom(%) ⊇ v(τ̇)∪ v(τ̇ ′), and C% = True,
we have τ̇% = τ̇ ′%.

Proof. Induction over the depth of the derivation tree of 〈τ̇ = τ̇ ′〉V C.

Now we focus on the main typing rule system, shown in Figure 13.

Lemma 5.13. For all concrete t, τ , Γ with Γ ` t :: τ in PolySeq+, there exist pairwise disjoint,
general parameterizations Γ̇, ṫ, τ̇ , a constraint C, and a mark replacement % such that Γ̇% = Γ,
ṫ% = t, τ̇% = τ , C% = True, and 〈Γ̇ ` ṫ〉V (C, τ̇) in PolySeqC .

Proof. We prove by induction over the depth of the derivation tree of Γ ` t :: τ in PolySeq+.
Hence, we regard only the last derivation rule.

In the case
τ � τ ′

(Var’) ,
Γ, x :: τ ` x :: τ ′

by Lemma 5.9 we have τ̇ , τ̇ ′, C, and %p, such that 〈τ̇ � · 〉 V (C, τ̇ ′), C%p = True, τ̇%p = τ , and
τ̇ ′%p = τ ′. We can find a general parameterization Γ̇ of Γ, such that v(Γ̇) ∩ dom(%p) = ∅ and a
minimal mark replacement %′ with respect to Γ̇, such that Γ̇%′ = Γ. Now with % = %p ∪ %′ it holds
that C% = True, Γ̇% = Γ, τ̇% = τ , and τ̇ ′% = τ ′. By (VarC) we have 〈Γ̇, x :: τ̇ ` x〉 V (C, τ̇ ′) and
are done.

The case (Nil’) is similar to (Var’).
In the case

Γ ` t1 :: τ Γ ` t2 :: [τ]
(Cons)

Γ ` (t1 : t2) :: [τ]

21

Section 5 PolySeqC- Getting All Permissible Types

we rewrite the rule to

Γ ` t1 :: τ Γ ` t2 :: [τ ′] τ = τ ′
(Cons) .

Γ ` (t1 : t2) :: [τ]

By the induction hypotheses and Lemma 5.11 we have general parameterizations Γ̇1 and Γ̇2 of Γ,
τ̇1 and τ̇2 of τ , as well as τ̇ ′1 and τ̇ ′2 of τ ′. W.l.o.g. we assume Γ̇ = Γ̇1 = Γ̇2, τ̇ = τ̇1 = τ̇2, and
τ̇ ′ = τ̇ ′1 = τ̇ ′2. Furthermore, we have %p1, %p2, and %p3 such that

〈Γ̇ ` ṫ1〉V (C1, τ̇) holds and (C1)%p1 = True, (Γ̇)%p1 = Γ, (ṫ1)%p1 = t1, (τ̇)%p1 = τ ;

〈Γ̇ ` ṫ2〉V (C2, [τ̇ ′]) holds and (C2)%p2 = True, (Γ̇)%p2 = Γ, (ṫ2)%p2 = t2, (τ̇ ′)%p2 = τ ′ ;

as well as
〈τ̇ = τ̇ ′〉V C3 holds and (C3)%p3 = True, (τ̇)%p3 = τ, (τ̇ ′)%p3 = τ ′ .

We can assume dom(%p1)∩ dom(%p2) = v(Γ̇), dom(%p1)∩ dom(%p3) = v(τ̇), and dom(%p2)∩ dom(%p3) =
v(τ̇ ′). Therefore, all three are pairwise compatible and we take % = %p1 ∪ %

p
2 ∪ %

p
3. By applying

(ConsC) with the three just stated premises, we are done.
For the remaining rules, we will just point out differences from the already proved cases.
Regarding (Abs’ε), we extend % by a new entry ν 7→ ε. Similarly, for (Abs’◦) we add ν 7→ ◦

as new entry.
In the case (TApp”ε) Lemma 5.7 is used.
For

Γ ` t :: ∀◦α.τ1 τ1[τ2/α] � τ3
(TApp”◦)

Γ ` (tτ2) :: τ3

we need that for each τ2 and Γ with τ2 closed under Γ and all general parameterizations Γ̇ and
τ̇2 of Γ and τ2, there exists some C1 with 〈Γ̇ ` τ̇ ∈ Seqable〉 V C1 and v(C1) ⊆ v(Γ̇) ∪ v(τ̇2).
This is true by Lemma 5.6. Hence, considering additionally the induction hypotheses, we can fire
rule (TAppC) in PolySeqC and take % to be the union of the assignments known for the second
and third premise, extended by ν 7→ ◦. For v(C1) ⊆ v(Γ̇) ∪ v(τ̇2), C1 is closed under %, and for
(◦ = ε) ⇔ False, the constraint ((ν = ε) ⇒ (C1)) ∧ C2 ∧ C3 evaluates to True when instantiated
by %.

Lemma 5.14. For all Γ̇, ṫ, τ̇ , constraints C, and assignments % with v(Γ̇)∪ v(ṫ)∪ v(τ̇) ⊆ dom(%),
such that 〈Γ̇ ` ṫ〉V (C, τ̇) and C% = True, we have Γ̇% ` ṫ% :: τ̇% in PolySeq+.

Proof. The proof is by induction over the depth of the derivation tree of 〈Γ̇ ` ṫ〉 V (C, τ̇) in
PolySeqC . We only consider the rule at the root node of the derivation tree and know that for
each premise of that rule Lemma 5.14 holds either by the induction hypothesis, or the premise
satisfies one of the Lemmas 5.8, 5.10, 5.12.

In the case (VarC) we have by Lemma 5.10 that τ̇% � τ̇ ′% holds for all % with v(τ̇) ∪ v(τ̇ ′) ⊆
dom(%) and C% = True. Hence, this holds also for all % with v(τ̇) ∪ v(τ̇ ′) ∪ v(Γ̇) ⊆ dom(%) and
C% = True, and by (Var’) we are done.

The case (NilC) is similar to (VarC).
Regarding

〈Γ̇ ` ṫ1〉V (C1, τ̇) 〈Γ̇ ` ṫ2〉V (C2, [τ̇ ′]) 〈τ̇ = τ̇ ′〉V C3
(ConsC)

〈Γ̇ ` (ṫ1 : ṫ2)〉V (C1 ∧ C2 ∧ C3, [τ̇])

we have
∀% ∈ Ψ1.(〈Γ̇ ` ṫ1〉V (C1, τ̇))⇒ Γ̇% ` (ṫ1)% :: τ̇% ,

∀% ∈ Ψ2.(〈Γ̇ ` ṫ2〉V (C2, ˙[τ ′]))⇒ Γ̇% ` (ṫ2)% :: ˙[τ ′]% ,

and
∀% ∈ Ψ3.(〈τ̇ = τ̇ ′〉V C3)⇒ τ̇% = τ̇ ′%

22

with
Ψ1 = {% | v(Γ̇) ∪ v(ṫ1) ∪ v(τ̇) ⊆ dom(%) ∧ ((C1)% = True)}
Ψ2 = {% | v(Γ̇) ∪ v(ṫ2) ∪ v(τ̇ ′) ⊆ dom(%) ∧ ((C2)% = True)}

Ψ3 = {% | v(τ̇) ∪ v(τ̇ ′) ⊆ dom(%) ∧ ((C3)% = True)}
by the induction hypothesis and Lemma 5.12.

Therefore, with a slight rewrite to an extra equality premise, we have all premises to apply
(Cons) for all instantiations of Γ̇, ṫ1, ṫ2, τ̇ , τ̇ ′ by any % ∈ Ψ1 ∩Ψ2 ∩Ψ3. Now, we know that for all
% ∈ Ψ1 ∩Ψ2 ∩Ψ3 = {% | v(Γ̇) ∪ v(ṫ1) ∪ v(ṫ2) ∪ v(τ̇) ∪ v(τ̇ ′) ⊆ dom(%) ∧ ((C1 ∧C2 ∧C3)% = True)},
we have Γ̇% ` ((ṫ1)% : (ṫ2)%) :: ˙[τ]%. Since we do not lose anything when restricting the domain
of % to the entries really used during the instantiation, we have the same result for all % ∈ {% |
v(Γ̇) ∪ v(ṫ1) ∪ v(ṫ2) ∪ v(τ̇) ⊆ dom(%) ∧ ((C1 ∧ C2 ∧ C3)% = True)}, which is exactly the claim.

The proof for (LCaseC) is similar.
In the case

〈Γ̇, x :: τ̇1 ` ṫ〉V (C1, τ̇2) 〈 · � τ̇1〉V (C2, τ̇ ′1)
(AbsC)

〈Γ̇ ` (λx :: τ̇1.ṫ)〉V (C1 ∧ C2, τ̇ ′1 →ν τ̇2)

we have
∀% ∈ Ψ1.(〈Γ̇, x :: τ̇1 ` ṫ〉V (C1, τ̇2)⇒ Γ̇%, x :: (τ̇1)% ` ṫ% :: (τ̇2)%

and
∀% ∈ Ψ2.(〈 · � τ̇1〉V (C2, τ̇ ′1))⇒ (τ̇ ′1)% � (τ̇1)%

with
Ψ1 = {% | v(Γ̇) ∪ v(τ̇1) ∪ v(τ̇2) ⊆ dom(%) ∧ ((C1)% = True)}

and
Ψ2 = {% | v(τ̇1) ∪ v(τ̇ ′1) ⊆ dom(%) ∧ ((C2)% = True)}

by the induction hypothesis and Lemma 5.10. Hence, we can apply either (Abs’ε) or (Abs’◦) in
PolySeq+. For the first rule we get Γ̇% ` (λx :: (τ̇1)%.ṫ%) :: (τ̇ ′1 →ν τ̇2)% for all % ∈ Ψ1 ∩ Ψ2 ∩ {% |
%(ν) = ε}. And for the second rule we get the same statement but for % ∈ Ψ1∩Ψ2∩{% | %(ν) = ◦}.
Therefore, we have Γ̇% ` (λx :: (τ̇1)%.ṫ%) :: (τ̇ ′1 →ν τ̇2)% for all % ∈ {% | v(Γ̇) ∪ v(τ̇1) ∪ v(ṫ) ∪ v(τ̇ ′1 →ν

τ̇2) ⊆ dom(%) ∧ ((C1 ∧ C2)% = True)}, which is the claim.
A remaining interesting case is

〈Γ̇ ` τ̇2 ∈ Seqable〉V C1

〈Γ̇ ` ṫ〉V (C2,∀να.τ̇1) 〈τ̇1[τ̇2/α] � · 〉V (C3, τ̇3)
(TAppC)

〈Γ̇ ` (ṫτ̇2)〉V (((ν = ε)⇒ (C1)) ∧ C2 ∧ C3, τ̇3)

where by Lemma 5.8, the induction hypothesis, and Lemma 5.10 we have

∀% ∈ Ψ1.(〈Γ̇ ` τ̇2 ∈ Seqable〉V C1)⇒ Γ̇% ` (τ̇2)% ∈ Seqable ,

∀% ∈ Ψ2.(〈Γ̇ ` ṫ〉V (C2,∀να.τ̇1))⇒ Γ̇% ` ṫ% :: (∀να.τ̇1)% ,

and
∀% ∈ Ψ3.(〈τ̇1[τ̇2/α] � · 〉V (C3, τ̇3))⇒ (τ̇1)%[(τ̇2)%/α] � (τ̇3)%

with
Ψ1 = {% | v(Γ̇) ∪ v(τ̇2) ⊆ dom(%) ∧ ((C1)% = True)}

Ψ2 = {% | v(Γ̇) ∪ v(ṫ) ∪ v(τ̇1) ∪ {ν} ⊆ dom(%) ∧ ((C2)% = True)}
Ψ3 = {% | v(τ̇1) ∪ v(τ̇2)∪ | v(τ̇3) ⊆ dom(%) ∧ ((C3)% = True)} .

If we decompose Ψ2 into Ψ◦2 = {% | % ∈ Ψ2∧%(ν) = ◦} and Ψε
2 = {% | % ∈ Ψ2∧%(ν) = ε}, we have

Γ̇% ` (ṫ%)(τ̇2)% :: (τ̇3)% for all % ∈ Ψ◦ = Ψ◦2∩Ψ3 by (TApp”◦), and the same for % ∈ Ψε = Ψ1∩Ψε
2∩Ψ3

by (TApp”ε). Hence, we have the statement for all % ∈ Ψ◦ ∪Ψε = {% | v(Γ̇)∪ v(ṫ)∪ v(τ̇1)∪ v(τ̇2)∪
v(τ̇3)∪ {ν} ⊆ dom(%)∧ ((((ν = ε)⇒ (C1))∧C2 ∧C3)% = True)}, and by the same reasoning as in
the case (ConsC) we get the claim.

The proof of the remaining rules requires nothing not already mentioned.

23

Section 6 Implementation and Extensions

Proof (of Theorem 5.3). Equivalence, in the sense of typability, is direct by Definition 5.2 and
Lemmas 5.13 and 5.14.

With PolySeqC we have reached the initial goal of a calculus with a refined type system,
providing for stronger free theorems than the standard calculus PolySeq, and a system of typing
rules suitable to set up an algorithm which returns the set of all refined types a term, given with
standard type annotations as in PolySeq, is typable to.

By Definition 5.2 and Theorem 5.3, it suffices to investigate conditional typability as stated by
the typing rule system from Figure 13 to capture all types a given term is typable to. Afterwards,
we can solve the constraint and instantiate the parameterized typing environment, term, and type
to gain the set of all refined types. Furthermore, by the subtype relation stated through the rules
in Figure 11 and characterized by Lemma 3.7, we can cut down the set of refined types to the
minimal ones, providing the strongest free theorems.

As an example how PolySeqC is used algorithmically for type refinement, we again consider
the function foldl ′′ from the introduction. The algorithm’s input will be the term foldl ′′ (in the
style of PolySeq, in particular with standard type annotations at the binding occurrences of term
variables). Since foldl ′′ is closed, the typing environment is empty. First, we add pairwise distinct
variable marks, ν1, . . . , νm, at all ∀-quantifiers and arrows at the type annotations in foldl ′′. This
manipulation is denoted by a dot over foldl ′′. Now we use the typing rules of PolySeqC backwards
to generate a derivation tree for ˙foldl ′′ in the empty environment. If there is such a derivation
tree (and since foldl ′′ is typable in PolySeq, there is), we can use it to determine C and τ̇ such
that 〈 ` ˙foldl ′′〉 V (C, τ̇) holds in PolySeqC . The parameterized type τ̇ contains variable marks
νm+1, . . . , νm+n, and C imposes constraints on the marks ν1 . . . νm+n (and on other marks only
used during the typing derivation). Now we determine the mark replacements % that instantiate
νm+1, . . . , νm+n and for which C% is True. Their application to τ̇ provides us all refined types of
foldl ′′. In a last step, we sort out types that are not minimal in this set with respect to the subtype
relation stated by the rules in Figure 11, because these types would induce unnecessary restrictions
on the corresponding free theorems.

For foldl ′′ we end up with the already known refined type ∀◦a.∀b.(a→◦ b→ a)→ a→ [b]→ a.
But now it has been derived automatically!

6 Implementation and Extensions

Up to now, the introduced polymorphic calculi contain only lists as algebraic data type, but the
extension to other algebraic data types and base types like integers and Booleans is straightfor-
ward. Everything required is already present from the handling of lists. Also the introduction of
operations like integer addition requires nothing new.

Extensions are done for integers (with addition) and Booleans (with a case-statement), imple-
mented and usable through a web interface7. The extended term and type syntax is shown in
Figure 17. When using the web interface, the ASCII syntax is _{} for subscripts, -> for →, \ for
λ, /\ for Λ, and forall for ∀.

To allow more natural input, some syntactic sugar is added. We allow the statements

if t then t1 else t2 and case t of {False→ t2 ; True→ t1} ,

which are both translated into case t of {True → t1 ; False → t2}. Furthermore, we introduce a
seq primitive8 and a non-strict (and non-recursive) let statement.

The corresponding new type derivation rules are shown in Figure 18. Also the conditional
subtyping, class membership, and equality rule systems, as well as the non-conditional subtyping
rule system shown in Figure 11, are extended in a straightforward way.

The implementation takes a term with standard type annotations at all binding occurrences of
term variables and returns all minimal (in the sense of minimal logical relation) refined types the

7http://linux.tcs.inf.tu-dresden.de/˜seideld/cgi-bin/polyseq.cgi
8Here seq is not a first-class function. Partial applications of it are not allowed.

24

http://linux.tcs.inf.tu-dresden.de/~seideld/cgi-bin/polyseq.cgi

τ ::= α | α◦ | [τ] | τ → τ | τ →◦ τ | ∀α.τ | Int | Bool

t ::= x | n | True | False | []τ | t : t | case t of {[]→ t ; x : x→ t} |
t+ t | case t of {True→ t ; False→ t} | let x = t in t |
λx :: τ.t | t t | Λα.t | tτ | fix t | let! x = t in t | seq t t |

Figure 17: Syntax of Types τ and Terms t of the Extended Calculus.

〈Γ ` n〉V (True, Int) (IntC)

〈Γ ` True〉V (True,Bool) (TrueC) 〈Γ ` False〉V (True,Bool) (FalseC)

〈Γ ` t1〉V (C1, Int) 〈Γ ` t2〉V (C2, Int)
(AddC)〈Γ ` (t1 + t2)〉V (C1 ∧ C2, Int)

〈Γ ` t〉V (C1,Bool) 〈Γ ` t1〉V (C2, τ2)

〈Γ ` t2〉V (C3, τ
′
2) 〈τ2 = τ ′2〉V C4

(BCaseC)〈Γ ` (case t of {True→ t1 ; False→ t2})〉V (C1 ∧ C2 ∧ C3 ∧ C4, τ2)

〈Γ ` t1〉V (C1, τ1) 〈Γ, x :: τ1 ` t2〉V (C2, τ2)
(LetC)〈Γ ` (let! x = t1 in t2)〉V (C1 ∧ C2, τ2)

〈Γ ` t1〉V (C1, τ1) 〈Γ ` τ1 ∈ Seqable〉V C2 〈Γ ` t2〉V (C3, τ2)
(SeqC)〈Γ ` (seq t1 t2)〉V (C1 ∧ C2 ∧ C3, τ2)

Figure 18: Additional Conditional Typing Rules for the Extension of PolySeqC .

term is typable to in the refined type system. Additionally, it presents the refined free theorems,
as well as the theorem for the standard type. The interesting parts in the theorems are highlighted
in the web interface.

Regarding the initial examples of foldl and the strict versions foldl ′, foldl ′′, and foldl ′′′9, the
highlighted parts in the free theorems produced point out that the totality restriction on f remains
required for foldl ′, while the other additional restrictions mentioned in the first paragraph of
Section 3 disappear. For foldl ′′ as input, the totality restriction on f and the restriction that
c = ⊥ iff c′ = ⊥ disappear, but none of the others do, while for foldl ′′′ only the restriction that
c = ⊥ iff c′ = ⊥ remains. Regarding foldl , all restrictions vanish. (The remaining highlighted
parts in this case represent a strengthening of the theorem, not a restriction.) A screenshot of the
output for foldl ′′ is shown in Figure 19. Altogether, it is possible to place and drop each of the
strict let statements and analyze which statement forces which restriction. Thus, we really get a
fine-grained analysis about how selective strictness influences free theorems.

7 Conclusion

The calculus developed, with the refined type system and the possibility to automatically retype
standardly typed terms to refined types, allows a fine-grained analysis of the influence of selective
strict evaluation on free theorems depending on its concrete use in a term. By the implementation
of the retyping algorithm we provide a tool locating exactly which preconditions on a free theorem
arise from particular uses of selective strict evaluation in a concrete term. Hence, we are able to
regain the best reachable (equational) free theorems with respect to analyzing where strictness is
forced.

9The functions’ syntax must be adapted to the syntax used in the web interface, as just given. For an example,
see the screenshot of the web interface in Figure 19.

25

Section 7 Conclusion

Figure 19: Screenshot of the Web Interface’s Output for foldl ′′.

26

REFERENCES

The presented calculus PolySeq, especially considered with straightforward extension to alge-
braic data types and base types as described in Section 6, is quite close to real-world lazy functional
programming languages like Haskell. This allows us to apply the refined free theorems for the cor-
rectness proofs of transformations in such languages. For example, the correctness of the fusion
property for foldl mentioned in the introduction is a direct consequence of the free theorem for
foldl ’s refined type. On the other hand, the refined theorems help to easily figure out incorrect
assumptions, such as that the fusion property holds for foldl ′.

References

A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to deforestation. In FPCA, Proceedings,
pages 223–232. ACM Press, 1993. DOI: 10.1145/165180.165214.

P. Hudak, J. Hughes, S. L. Peyton Jones, and P. Wadler. A history of Haskell: Being lazy with
class. In HOPL-III, Proceedings, pages 1–55, June 2007.

G. Hutton. A tutorial on the universality and expressiveness of fold. Journal of Functional
Programming, 9(4):355–372, 1999.

P. Johann. A generalization of short-cut fusion and its correctness proof. Higher-Order and
Symbolic Computation, 15(4):273–300, 2002.

P. Johann and J. Voigtländer. Free theorems in the presence of seq. In POPL, Proceedings, pages
99–110. ACM Press, 2004. DOI: 10.1145/982962.964010.

J. Launchbury and R. Paterson. Parametricity and unboxing with unpointed types. In ESOP,
Proceedings, volume 1058 of LNCS, pages 204–218. Springer-Verlag, 1996. DOI: 10.1007/3-540-
61055-3 38.

J.C. Reynolds. Types, abstraction and parametric polymorphism. In Information Processing,
Proceedings, pages 513–523. Elsevier, 1983.

D. Seidel and J. Voigtländer. Checking the influence of non-termination on free theorems (Extended
abstract). In WST, Informal Proceedings, pages 80–83, 2009.

J. Svenningsson. Shortcut fusion for accumulating parameters & zip-like functions. In ICFP,
Proceedings, pages 124–132. ACM Press, 2002. DOI: 10.1145/583852.581491.

J. Voigtländer. Proving correctness via free theorems: The case of the destroy/build-rule. In
PEPM, Proceedings, pages 13–20. ACM Press, 2008. DOI: 10.1145/1328408.1328412.

P. Wadler. Theorems for free! In FPCA, Proceedings, pages 347–359. ACM Press, 1989. DOI:
10.1145/99370.99404.

A Proof of Theorem 2.2

Proof. The proof is by induction over typing derivations with respect to the system from Fig-
ures 3 and 4. The cases Γ, x :: τ ` x :: τ and Γ ` []τ :: [τ] are immediate.

In the case

Γ ` t1 :: τ Γ ` t2 :: [τ]

Γ ` (t1 : t2) :: [τ]
,

we have
([[t1 : t2]]θ1,σ1 , [[t1 : t2]]θ2,σ2) ∈ ∆[τ],ρ

⇔ (b[[t1]]θ1,σ1 : [[t2]]θ1,σ1c, b[[t1]]θ2,σ2 : [[t2]]θ2,σ2c) ∈ list ∆τ,ρ

⇔ ([[t1]]θ1,σ1 , [[t1]]θ2,σ2) ∈ ∆τ,ρ, ([[t2]]θ1,σ1 , [[t2]]θ2,σ2) ∈ ∆[τ],ρ ,

27

http://dx.doi.org/10.1145/165180.165214
http://dx.doi.org/10.1145/982962.964010
http://dx.doi.org/10.1007/3-540-61055-3_38
http://dx.doi.org/10.1007/3-540-61055-3_38
http://dx.doi.org/10.1145/583852.581491
http://dx.doi.org/10.1145/1328408.1328412
http://dx.doi.org/10.1145/99370.99404
http://dx.doi.org/10.1145/99370.99404

Section A Proof of Theorem 2.2

so the induction hypotheses suffice.
In the case

Γ ` t :: [τ1] Γ ` t1 :: τ2 Γ, x1 :: τ1, x2 :: [τ1] ` t2 :: τ2

Γ ` (case t of {[]→ t1 ; x1 : x2 → t2}) :: τ2
,

we have to show that the values
[[t1]]θ1,σ1 if [[t]]θ1,σ1 = b[]c
[[t2]]θ1,σ1[x1 7→a, x2 7→b] if [[t]]θ1,σ1 = ba : bc
⊥ if [[t]]θ1,σ1 = ⊥

and 
[[t1]]θ2,σ2 if [[t]]θ2,σ2 = b[]c
[[t2]]θ2,σ2[x1 7→c, x2 7→d] if [[t]]θ2,σ2 = bc : dc
⊥ if [[t]]θ2,σ2 = ⊥

are related by ∆τ2,ρ. Since ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆[τ1],ρ = list ∆τ1,ρ by induction hypothesis, we only
have to consider the following three cases:

1. [[t]]θ1,σ1 = b[]c and [[t]]θ2,σ2 = b[]c, in which case the induction hypothesis ([[t1]]θ1,σ1 , [[t1]]θ2,σ2) ∈
∆τ2,ρ suffices,

2. [[t]]θ1,σ1 = ba : bc and [[t]]θ2,σ2 = bc : dc with (a, c) ∈ ∆τ1,ρ and (b, d) ∈ list ∆τ1,ρ = ∆[τ1],ρ, in
which case the induction hypothesis that for every such a, b, c, and d,

([[t2]]θ1,σ1[x1 7→a, x2 7→b], [[t2]]θ2,σ2[x1 7→c, x2 7→d]) ∈ ∆τ2,ρ ,

suffices, and

3. [[t]]θ1,σ1 = ⊥ and [[t]]θ2,σ2 = ⊥, in which case we have to show (⊥,⊥) ∈ ∆τ2,ρ, which follows
from strictness of ∆τ2,ρ (cf. Lemma 2.1).

In the case
Γ, x :: τ1 ` t :: τ2

Γ ` (λx :: τ1.t) :: τ1 → τ2
,

we have
([[λx :: τ1.t]]θ1,σ1 , [[λx :: τ1.t]]θ2,σ2) ∈ ∆τ1→τ2,ρ

⇔ (bλa.[[t]]θ1,σ1[x 7→a]c, bλb.[[t]]θ2,σ2[x 7→b]c) ∈ ∆τ1→τ2,ρ
⇔ ∀(a, b) ∈ ∆τ1,ρ. ([[t]]θ1,σ1[x 7→a], [[t]]θ2,σ2[x 7→b]) ∈ ∆τ2,ρ ,

so the induction hypothesis suffices.
In the case

Γ ` t1 :: τ1 → τ2 Γ ` t2 :: τ1
Γ ` (t1 t2) :: τ2

,

we have
([[t1 t2]]θ1,σ1 , [[t1 t2]]θ2,σ2) ∈ ∆τ2,ρ

⇔ ([[t1]]θ1,σ1 $ [[t2]]θ1,σ1 , [[t1]]θ2,σ2 $ [[t2]]θ2,σ2) ∈ ∆τ2,ρ

⇐ ([[t2]]θ1,σ1 , [[t2]]θ2,σ2) ∈ ∆τ1,ρ,
∀(a, b) ∈ ∆τ1,ρ. ([[t1]]θ1,σ1 $ a, [[t1]]θ2,σ2 $ b) ∈ ∆τ2,ρ

⇐ ([[t2]]θ1,σ1 , [[t2]]θ2,σ2) ∈ ∆τ1,ρ,
([[t1]]θ1,σ1 , [[t1]]θ2,σ2) ∈ ∆τ1→τ2,ρ ,

so the induction hypotheses suffice.
Regarding

α,Γ ` t :: τ

Γ ` (Λα.t) :: ∀α.τ
,

we have
([[Λα.t]]θ1,σ1 , [[Λα.t]]θ2,σ2) ∈ ∆∀α.τ,ρ

⇔ (λD1.[[t]]θ1[α 7→D1],σ1 , λD2.[[t]]θ2[α7→D2],σ2) ∈ ∆∀α.τ,ρ
⇔ ∀D1, D2 pcpos,R ∈ Rel(D1, D2).

([[t]]θ1[α 7→D1],σ1 , [[t]]θ2[α7→D2],σ2) ∈ ∆τ,ρ[α7→R] ,

28

so the induction hypothesis suffices.
In the case

Γ ` t :: ∀α.τ1
Γ ` (tτ2) :: τ1[τ2/α]

,

we have
([[tτ2]]θ1,σ1 , [[tτ2]]θ2,σ2) ∈ ∆τ1[τ2/α],ρ

⇔ ([[t]]θ1,σ1 [[τ2]]θ1 , [[t]]θ2,σ2 [[τ2]]θ2) ∈ ∆τ1,ρ[α7→∆τ2,ρ]

⇐ ∀D1, D2 pcpos,R ∈ Rel(D1, D2).
([[t]]θ1,σ1 D1, [[t]]θ2,σ2 D2) ∈ ∆τ1,ρ[α7→R]

⇔ ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆∀α.τ1,ρ ,

so the induction hypothesis suffices. Note that the equivalence ∆τ1[τ2/α],ρ = ∆τ1,ρ[α7→∆τ2,ρ], used
in the first step above, holds by an easy induction on τ1. Also note that the consecutive step uses
∆τ2,ρ ∈ Rel , as justified by Lemma 2.1.

In the case
Γ ` t :: τ → τ
Γ ` fix t :: τ

we have

([[fix t]]θ1,σ1 , [[fix t]]θ2,σ2) ∈ ∆τ,ρ

⇔ (
F
n≥0 ([[t]]θ1,σ1 $)n ⊥,

F
n≥0 ([[t]]θ2,σ2 $)n ⊥) ∈ ∆τ,ρ

⇐ ∀n ∈ N0.((([[t]]θ1,σ1 $)n (⊥), ([[t]]θ2,σ2 $)n (⊥)) ∈ ∆τ,ρ)
⇐ ∀(x1, x2) ∈ ∆τ,ρ.((([[t]]θ1,σ1 $) (x1), ([[t]]θ2,σ2 $) (x2)) ∈ ∆τ,ρ)
⇐ ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ {(f, g) | f = ⊥ iff g = ⊥, ∀(a, b) ∈ ∆τ,ρ. (f $ a, g $ b) ∈ ∆τ,ρ}
⇔ ([[t]]θ1,σ1 , [[t]]θ2,σ2) ∈ ∆τ→τ,ρ

and therefore the premise suffices. Note that we used the strictness of ∆τ,ρ in the second, and
additionally the continuity of ∆τ,ρ for the first implication, both given by Lemma 2.1.

Finally, in the case
Γ ` t1 :: τ1 Γ, x :: τ1 ` t2 :: τ2

Γ ` (let! x = t1 in t2) :: τ2
,

we have to show that the values{
[[t2]]θ1,σ1[x 7→a] if [[t1]]θ1,σ1 = a 6= ⊥
⊥ if [[t1]]θ1,σ1 = ⊥

and {
[[t2]]θ2,σ2[x 7→b] if [[t1]]θ2,σ2 = b 6= ⊥
⊥ if [[t1]]θ2,σ2 = ⊥

are related by ∆τ2,ρ. By the induction hypothesis ([[t1]]θ1,σ1 , [[t1]]θ2,σ2) ∈ ∆τ1,ρ and bottom-reflection
of ∆τ1,ρ (cf. Lemma 2.1) we only have to consider the following two cases:

1. [[t1]]θ1,σ1 = a 6= ⊥ and [[t1]]θ2,σ2 = b 6= ⊥, in which case the induction hypothesis that for
every (a, b) ∈ ∆τ1,ρ,

([[t2]]θ1,σ1[x 7→a], [[t2]]θ2,σ2[x 7→b]) ∈ ∆τ2,ρ ,

suffices, and

2. [[t1]]θ1,σ1 = ⊥ and [[t1]]θ2,σ2 = ⊥, in which case we have to show (⊥,⊥) ∈ ∆τ2,ρ, which follows
from strictness of ∆τ2,ρ (cf. Lemma 2.1 again).

This completes the proof.

29

