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Abstract. Bundy and Richardson [4] developed a method for reasoning
about functions manipulating lists which is based on separating shape from
content, and then exploiting a mathematically convenient representation
for expressing shape-only manipulations. Later, Prince et al. [7] extended
the technique to other data structures, and gave it a more formal basis
via the theory of containers. All these results are restricted to fully
polymorphic functions. For example, functions using equality tests on
list elements are out of reach. We remedy this situation by developing
new abstractions and representations for less polymorphic functions. In
Haskell speak, we extend the earlier approach to be applicable in the
presence of (certain) type class constraints.

1 Introduction

Abstraction is a useful strategy to get a clear view on the things that matter.
Regarding proofs about program equivalences, it is beneficial to have an abstract
representation of data structures and functions, holding exactly the information
necessary for the intended reasoning in an easily accessible form. For lists, Bundy
and Richardson [4] introduced a higher-order formulation in which a list is a
pair (n, f) where n is a natural number representing the length of the list, i.e.,
its shape, and f is a content function taking each position in the list to its
corresponding element. Bundy and Richardson’s motivation was that reasoning
about such representations can be easier than reasoning about standard lists. In
a more precise and more general form, the idea later recurred as reasoning via
container representations [1,7].

The usefulness of the abstraction from the actual elements stored in a list is
made apparent by the fact that certain container morphisms, taking a list (in
this case) to another one, do not inspect or alter the image of f . An example
for such a container morphism is the function reversec , the container version of
the usual function reversing a list. The application of this container morphism is
given as follows:

reversec (n, f) = (n, λi→ f (n− i− 1))
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In general, a morphism shuffles positions (here by composing f with the function
λi→ n− i− 1) and can alter the length of the list, remove elements, duplicate
others. It cannot modify the elements themselves or add completely new elements.

The advantage of the container representation, which led Bundy and Richard-
son to using that representation, is that proofs about programs expressible as
the composition of container morphisms become (simple) arithmetic proofs. For
example, the proof that reversing a (finite) list twice is the identity is obtained
very easily as follows:

reversec (reversec (n, f)) = reversec (n, λi→ f (n− i− 1))
= (n, λi→ f (n− (n− i− 1)− 1))
= (n, λi→ f i)
= (n, f)

Prince et al. [7] use, from Abbott et al. [1,2], that container morphisms
correspond to parametrically polymorphic functions (or, natural transformations).
Such polymorphic functions act independently of the concrete input type and
hence, necessarily, independently of concrete elements of a type. Particularly, a
fully polymorphic function from lists to lists, expressed via the type [α]→ [α],
maps for every type τ input lists of type [τ ] to output lists of type [τ ] without
using any specifics of the type τ . For example, a possible definition of reverse in
Haskell [6] is:

reverse :: [α]→ [α]
reverse [ ] = [ ]
reverse (x : xs) = (reverse xs) ++ [x]

Using category theoretic notions, Prince et al. observe that such polymorphic
functions from lists to lists are isomorphic to the list container morphisms. The
correspondence also generalises to other, strictly positive, data types.

What both Bundy and Richardson [4] and Prince et al. [7] fail to do is to
reason about functions that are not fully polymorphic. An example, discussed
in both papers, is a function member that checks whether a given value is an
element of a given list. In Haskell:

member :: Eq α⇒ α→ [α]→ Bool
member x [ ] = False
member x (y : ys) = (x== y) || (member x ys)

Since programmed equivalence (the binary Bool-valued function (==)) depends
on the type at which it is used, member cannot be given the fully polymorphic type
α→ [α]→ Bool. It instead comes with the constraint “Eq α⇒”, using Haskell’s
type class mechanism [10]. In the discussions of both Bundy and Richardson [4]
and Prince et al. [7], the outcome is that the proposed reasoning method is not
effective for member . Similarly, reasoning would not work for the function nub
that eliminates duplicates from a list. These kind of functions also fall outside
the realm of shapely operations in the calculus of Jay [5].

While Bundy and Richardson only identified the problematic case, and Prince
et al. went a step further by observing that the problem can be explained by a lack



of polymorphism, we do provide a solution. In retrospect, at least the basic idea
behind our solution may seem obvious: if a function is not polymorphic enough,
then exploit information about to what actual extent it loses its polymorphism.
In Haskell, that information is provided exactly by type class constraints like
“Eq α⇒”. One example is the type of member seen above, another is that the
already mentioned function nub will naturally be given the type Eq α⇒ [α]→ [α].
Of course, there is no reason at all to expect that the latter corresponds to an
ordinary container morphism, because those were shown to be isomorphic to
functions of the more general type [α] → [α] instead. But we can investigate
refined notions of container representations and container morphisms, so that
effective reasoning in the spirit of the earlier method becomes possible again.
That is what we do in this paper.

In Section 2 we reconsider the connection between fully polymorphic functions
and container morphisms. This sets the stage for our original development in later
parts of the paper. In particular, it explains the use of free theorems [9], which in
the guise of category-theoretic naturality is also at the heart of the isomorphism
Prince et al. [7] use, and which in the form of free theorems for functions with
type class constraints (also called ad-hoc polymorphic functions) will also pave
the way to our results. In contrast to Prince et al., we do not use dependent
types and therefore have slightly different formalisations of container values and
container morphisms. Our reason for abstaining from using dependent types
is notational convenience. Already by comparing the formulations of otherwise
equivalent results and examples by Bundy and Richardson [4] and Prince et al. [7],
it becomes clear that the former is lighter on notation. For the treatment of
ad-hoc/type class polymorphism we found that the overhead of keeping exact
dependent typing is even more cumbersome. However, there is something to lose by
using less exact typing: we will not have an exact isomorphism as that employed by
Prince et al. [7]. But we show in Section 2 that our setup is nevertheless sufficient
for doing the kind of reasoning the overall method is aiming for. Moreover, it is
perfectly possible to add all the dependent types back in, both in Section 2 and
for our extensions to handle Eq-polymorphism, as presented in Section 3. Our
approach is not limited to the type class Eq . In a similar way, container values,
container morphisms, and the reasoning method can be extended to handle other
type classes. We demonstrate this, still in Section 3, for the type class Ord , and
offer some further perspective in Section 4.

2 The Earlier Results on Lists, Rephrased

In what follows, we use Haskell both as the language for writing functions about
which we might want to prove properties, and as the specification language for
container values and container morphisms, though for the latter use we will
stretch Haskell a bit by including general math concepts. Moreover, we do not
care about laziness in Haskell, or mixing strict and lazy evaluation using Haskell’s
seq-primitive. In fact, we assume a completely strict dialect of Haskell.



Let us first clarify some notations. The set of natural numbers is denoted
by Nat. Depending on the context, a natural number n represents either the
number n ∈ Nat or the set of natural numbers {0, . . . , n− 1}. Furthermore, the
type constructor for lists, already used in Haskell types in the introduction, is
defined by

[τ ] = {[x0, . . . , xn−1] | n ∈ Nat, ∀i ∈ n. xi :: τ}
Lists can alternatively be defined as container values, meaning by a shape

(the length) and a content function (mapping each position to its entry). An
appropriate definition (without using container terminology) was already intro-
duced by Bundy and Richardson [4]. We restate it here by defining the set C(τ)
of list container values of type τ as

C(τ) = {(n, f) | n :: Nat, f :: Nat→ τ}

where the fs need not be totally defined, i.e., can be partial functions. But in
every container value (n, f), we require f to be defined at least for all natural
numbers less than n, i.e., on every position of the represented list.

In the following lemma we give a pair of functions that map back (�−1) and
forth (�) between container values and lists and nearly constitute an isomorphism.
We continue to use the standard expression syntax of Haskell (while on the type
level, C(α) is “special syntax” that would not be found in actual Haskell). The
operator !! takes a list and a position and returns the list entry at that position
(counting from 0), and map is the usual function that applies its argument
function to each element in its input list.

Lemma 1. For each type τ as instantiation for α, the functions � and �−1
defined as

� :: C(α)→ [α] �−1 :: [α]→ C(α)
� (n, f) = map f [0 .. (n− 1)] �−1 xs = (length xs, xs !!)

satisfy the following three properties:

1. (� ◦ �−1) = id [τ ]

2. (�−1 ◦ �) ⊆ ≡C(τ), where ≡C(τ) = {((n, f), (n, f ′)) | ∀i ∈ n. f i = f ′ i}
3. ∀(n, f), (n′, f ′) ∈ C(τ). (n, f) ≡C(τ) (n′, f ′) iff � (n, f) = � (n′, f ′)

Proof. First, we show that (� ◦ �−1) xs = xs holds for every τ and xs :: [τ ],
by a straightforward induction on the length of xs. Second, we prove that
(�−1 ◦ �) ⊆ ≡C(τ). We can reason as follows, for every container value:

�−1 (� (n, f)) = (length (map f [0 .. (n− 1)]), (map f [0 .. (n− 1)]) !!)

= (n, f ◦ ([0 .. (n− 1)] !!))

= (n, f |n)

where g|n means the restriction of a function g to the domain n. The calculation
steps are all by definitions and obvious properties of length, map, and (!!). Finally,
the property ((n, f), (n′, f ′)) ∈ ≡C(τ) iff � (n, f) = � (n′, f ′) follows from the
definition of �.



Note that � and �−1 indeed only nearly constitute an isomorphism. For example,
let τ = Char and let f1 :: Nat → Char be the partial function with graph
{(0, ’a’), (1, ’b’)} and f2 :: Nat → Char the one whose graph additionally
contains (2, ’c’). Then (2, f1) and (2, f2) are two different elements of C(Char),
but � (2, f1) = [’a’, ’b’] = � (2, f2).

We define a container morphism as a family (sn, Pn)n∈Nat of pairs comprising
a natural number sn, intuitively the output list length for any input list of length n,
and a function Pn :: Nat → Nat, intuitively mapping positions in the output
list to positions in the input list when the latter has length n. For each container
morphism and each n ∈ Nat, we allow Pn to be a partial function, but require
that for every i ∈ sn, we have (Pn i) ∈ n. The latter guarantees that all output
positions are covered and that we never map an output position to a non-existing
input position. We often abbreviate (sn, Pn)n∈Nat as (s, P ). The application of
a container morphism to a container value is defined as

(s, P ) (n, f) = (sn, f ◦ Pn)

Here are some container morphisms that intuitively correspond to well-known
Haskell functions of type [α]→ [α]:

reversec = (n, λi→ n− i− 1)n∈Nat

initc = (n− 1, id)n∈Nat

tailc = (n− 1, λi→ i+ 1)n∈Nat

Before we can prove a systematic connection between fully polymorphic
functions (in strict Haskell) and container morphisms, and function composition
in either world, we need to say a few words on free theorems. Such theorems
are statements about functions only dependent on the function type, relying
on a formalisation of parametricity [8] for the functional language at hand. For
example, in strict Haskell, the free theorem for the type [α]→ Nat states that for
every function f :: τ1 → τ2 with τ1 and τ2 arbitrary, every function g :: [α]→ Nat,
and every list xs :: [τ1], we have g (map f xs) = g xs if f is defined for all elements
of xs. The intuition is that in a purely functional language g’s behaviour can
clearly only depend on its input argument. Moreover, since g is fully polymorphic
in the type α of elements of that input list, g cannot inspect those elements in
any way. Hence, g’s behaviour, and thus output, can only depend on the structure
of its input list. Since a general property of map is that it does not change
structure (and the output list is defined if f is defined on all input list elements),
g (map f xs) = g xs follows. Reasoning by parametricity/free theorems allows to
derive similar statements for a wide variety of types.

Incidentally, since the function length itself has exactly the above mentioned
polymorphic type, one of the “obvious properties” (actually two, another one
for (!!)) in the proof of Lemma 1 could have been deduced without considering
the concrete function length, just its type. But the real value of free theorems is
when we really do not know what concrete function we deal with, such as when
we want to prove that every strict-Haskell function of type [α]→ [α] corresponds
to some container morphism.



Since free theorems are available for free, i.e., can be automatically generated,
we will use them as given, without considering further formal background here.
Let us note, though, in preparation for Section 3, that free theorems in the
presence of type class polymorphism can be established by an indirection via
types (and functions) obtained through the dictionary translation method of
Wadler and Blott [10].

Theorem 1. For every function g :: [α]→ [α], there exists a container morphism
(s, P ) such that g ◦ � = � ◦ (s, P ).

Proof. Let g :: [α] → [α]. Then the free theorem for g’s type tells us that
g (map h l) = map h (g l) for every choice of types τ1, τ2, function h :: τ1 → τ2,
and list l :: [τ1] if h is defined for all elements of l. Hence, we can reason as
follows, for every container value:

g (� (n, f)) = g (map f [0 .. (n− 1)])
= map f (g [0 .. (n− 1)])
= � (�−1 (map f (g [0 .. (n− 1)])))
= � (length (g [0 .. (n− 1)]), f ◦ ((g [0 .. (n− 1)]) !!))
= � ((length (g [0 .. (n− 1)]), (g [0 .. (n− 1)]) !!)n∈Nat (n, f))

where the second step is by the free theorem, the third by Lemma 1(1), the fourth
by the definition of �−1 and properties of length, map, and (!!), and the last step
by the definition of the application of a container morphism to a container value.

Note that there is not a unique container morphism corresponding, in the sense
of Theorem 1, to a function g :: [α] → [α]. For example, for the standard
Haskell definition of init :: [α]→ [α], both initc = (n− 1, id)n∈Nat and initc =
(n − 1, id |n−1)n∈Nat satisfy init ◦ � = � ◦ initc. This (direction of) non-
uniqueness does no harm to our reasoning application, though. Together with
Lemma 1, Theorem 1 allows the calculation with container morphisms instead of
polymorphic functions. The required results are stated in the following corollary
and lemma.

Corollary 1. For every function g :: [α] → [α], there exists a container mor-
phism (s, P ) such that g = � ◦ (s, P ) ◦ �−1.

Proof. By Theorem 1 and Lemma 1(1).

Lemma 2. Let g, g′ :: [α] → [α]. Let (s, P ), (s′, P ′) be container morphisms
such that g = � ◦ (s, P ) ◦ �−1 and g′ = � ◦ (s′, P ′) ◦ �−1. Then we have
g ◦ g′ = � ◦ (s, P ) ◦ (s′, P ′) ◦ �−1.

Proof. By the assumptions, we have g ◦ g′ = � ◦ (s, P ) ◦ �−1 ◦ � ◦ (s′, P ′) ◦
�−1, so it would suffice to show that � ◦ (s, P ) ◦ �−1 ◦ � = � ◦ (s, P ). By
Lemma 1(3), this is equivalent to, for every type τ and (n, f) ∈ C(τ),

(s, P ) (�−1 (� (n, f))) ≡C(τ) (s, P ) (n, f)

But by Lemma 1(2), we have �−1 (� (n, f)) ≡C(τ) (n, f), and it is easy to show
from the definitions that for every (n, f), (n′, f ′) with (n, f) ≡C(τ) (n′, f ′), it
holds that (s, P ) (n, f) ≡C(τ) (s, P ) (n′, f ′).



Let us manifest the usefulness of our formal material by an example. Assume
we want to prove that reverse ◦ tail = init ◦ reverse holds. We have

reverse = � ◦ reversec ◦ �−1
init = � ◦ initc ◦ �−1
tail = � ◦ tailc ◦ �−1

for standard Haskell definitions of the list functions and reversec , initc , and tailc

as given above Theorem 1.1 By Lemma 2, it suffices to prove that

� ◦ reversec ◦ tailc ◦ �−1 = � ◦ initc ◦ reversec ◦ �−1

and by Lemma 1(3) indeed to prove that for every type τ and (n, f) ∈ C(τ),

(reversec ◦ tailc) (n, f) ≡C(τ) (initc ◦ reversec) (n, f)

We can calculate for the left-hand side

(reversec ◦ tailc) (n, f) = reversec (n− 1, λi→ f (i+ 1))

= (n− 1, λi→ f (((n− 1)− i− 1) + 1))

= (n− 1, λi→ f (n− 1− i))

and for the right-hand side

(initc ◦ reversec) (n, f) = initc (n, λi→ f (n− i− 1))

= (n− 1, λi→ f (n− i− 1))

to see that the claim holds.
Let us contrast the above proof with an attempt at directly proving reverse ◦

tail = init ◦ reverse using the Haskell definition of reverse from the introduc-
tion as well as some suitable definitions of tail and init . The interesting case
is the one of a non-empty list: reverse (tail (x : xs)) = init (reverse (x : xs)),
which reduces to the proof obligation reverse xs = init ((reverse xs) ++ [x]).
Now an inductive proof using the defining equations of init would be required,
where first the given proof obligation would have to be generalised to an actu-
ally suitable induction hypothesis (since simply performing induction on xs in
reverse xs = init ((reverse xs) ++ [x]) leads nowhere). In contrast, the above
proof requires neither induction nor inventing a generalisation. It just performs
simple arithmetics.

1 Clearly, neither Theorem 1 nor Corollary 1 prove the equivalence reverse = � ◦
reversec ◦ �−1 for the specific syntactic definitions of reverse and reversec given in
the introduction (and likewise for init and tail). The theorem and corollary provide,
for every g, one suitable definition for gc. It might not be the one we find useful for
reasoning. Finding such a useful syntactic representation, like reversec = (n, λi→
n− i− 1)n∈Nat, must be done on a case-by-case basis, but is often very natural, like
in all cases here.



3 Refining the Container-Related Notions

The results in the previous section can be extended in two directions. One is to
consider not only functions from lists to lists, but also functions between other
data structures that can be viewed as container values. That direction is already
explored by Prince et al. [7]. The extension that we consider is orthogonal to
that first one. In particular, while we focus on functions from lists to lists here,
we are confident that our results could be easily combined with the results of
Prince et al. [7] to handle functions (involving element tests like equivalence and
ordering) between arbitrary container structures.

Considering functions like nub, removing all duplicates from a list, or sort ,
sorting a list’s elements, it is clear that they are not fully polymorphic in their
list element type. The functions require the availability of an equivalence test or
an order defined on elements of the input list. Hence, Theorem 1 is not applicable
anymore. Our aim now is to appropriately adapt the notions of container value
and container morphism to get equally useful results for functions of types
Eq α ⇒ [α] → [α] and Ord α ⇒ [α] → [α] as the earlier works provide for
functions of type [α]→ [α].

It is important to note that our view on type classes is that they really hold
what they pretend to provide. In the case of Eq , that means that every type
in Eq indeed carries an equivalence relation. In real Haskell, the implemented
relations can be arbitrary (no reflexivity, transitivity, or symmetry are guaranteed
or checked). In the same spirit, in Section 3.2 we expect types in the type class
Ord to carry an actual total preorder (a reflexive, transitive, and total relation).

3.1 The Type Class Eq

To capture what happens if elements in a list are testable for equivalence, the
container notions have to be adjusted. We use E(M) to denote the class of all
(decidable) equivalence relations over a set M . For simplicity of notation, we
freely regard an equivalence relation ∼= on a subset of Nat as the equivalence
relation ∼= ∪ idNat on Nat when appropriate. For a type τ that is an instance of
Eq , we denote by ∼=τ the corresponding fixed (in a given program) equivalence
relation. Since in Haskell, it is actually accessible via the binary Bool-valued
function (==), we set:

∼=τ = {(x, y) | x :: τ, y :: τ, (x== y) = True}

Definition 1. Let τ be some type that is an instance of Eq. An Eq-container
value of type τ is a triple (n,∼=, f) with n :: Nat, ∼= ∈ E(Nat), and f :: Nat→ τ
a partial function such that

∀i, j ∈ n. i ∼= j ⇔ (f i) ∼=τ (f j)

or, equivalently,2

(ker∼=τ f |n) = (∼= ∩ (n× n)) (1)

2 The kernel of a function over a relation is defined as (ker∼= f) = {(i, j) | (f i) ∼= (f j)}.



The set of all such container values is denoted by CEq(τ).

The roles of n and f in the above definition are as before in the case of ordinary
list containers C(τ). Condition (1) implies the previous side condition that the
function f is defined at least for all natural numbers less than n. But condition (1)
is stronger than that. It involves the key new ingredient of Eq-container values,
namely the second component ∼=. The role of that equivalence relation is to
capture information, in terms of list positions, about equivalence tests between
elements accessible via f . For a concrete example, assume τ = Char and that the
equivalence relation ∼=Char were such that upper- and lowercase of the same letter
were considered equivalent, while different letters were considered inequivalent.
Then the list [’a’, ’A’, ’b’] :: [Char] could be represented as an Eq-container value
as (3,∼=, f), where ∼= = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 2)} and f maps 0 to ’a’, 1
to ’A’, and 2 to ’b’.

Some further explanations seem in order, to avoid possible misconceptions.
First, from Definition 1, in particular from the presence of ∼= (though not ∼=τ )
in container value triples, it might seem that each Eq-container value somehow
stores its own completely private equivalence relation so that, within the same
program, two members (n1,∼=1, f1) and (n2,∼=2, f2) of the same CEq(τ) can
interpret equivalence between elements of type τ in two different ways. Under
that perception, for example, some (2,∼=1, f1), (2,∼=2, f2) ∈ CEq(Char) could
represent the same list [’a’, ’A’] :: [Char] while somehow ∼=1 and ∼=2 could be
chosen in such a way that in one case when [’a’, ’A’] is passed to some function
g :: Eq α ⇒ [α] → [α] (or its “container version”) the two list elements are
considered equivalent, while in the other case they are not.

But that is not the case! Actually, by condition (1) we have that n, f , and τ
(through ∼=τ ) uniquely determine ∼= (or at least its relevant part, on n×n). So why,
then, do we include the ∼= in (n,∼=, f) ∈ CEq(τ) at all? The point is that we will
be able (in Definitions 2 and 3 below) to describe the behaviour of (a container
analogue of) a function g :: Eq α ⇒ [α]→ [α] on (n,∼=, f) solely by relying on
n and ∼=, rather than looking into f . That is the key abstraction/enabler for
exploiting the type class polymorphism when reasoning about such functions: that
the behaviour of such a function g can be understood by just considering relative
equivalences between list elements (as captured via ∼=), rather than the concrete
list elements themselves (as still accessible via f , but deliberately not used in
determining g’s behaviour). So explicitly representing and (while preserving the
invariant (1); see Lemma 4) manipulating ∼= is crucial to effectively “let the
symbols do the work”.

Hopefully having accepted ∼= as an explicit component of Eq-container values,
note further that we use f as a function from list positions into τ . We could
have been tempted to instead define f as a function from equivalence classes of
positions, with respect to ∼=, into τ , rather than from the positions themselves.
While these choices may appear to be interchangeable, there is actually a crucial
difference. With our choice we can distinguish elements that are equivalent with
respect to ∼=τ , but not equal. For example, consider the list [’a’, ’A’] :: [Char]
and assume that the equivalence relation ∼=Char were again the one mentioned



in the paragraph directly following Definition 1. Then a container representation
working with a function from equivalence classes of positions would, at length
two, only be able to represent lists with two equal elements ([’a’, ’a’], [’b’, ’b’],
[’A’, ’A’], . . . ) and lists with different letters ([’a’, ’b’], [’b’, ’a’], [’a’, ’B’], . . . ), but
not the list [’a’, ’A’] as distinguishable from [’a’, ’a’] and [’A’, ’A’]. One might
be willing to accept this limited expressiveness, as indeed when the equivalence
provided by the type class instance for Char is “same letter”-ness, then all of
[’a’, ’A’], [’a’, ’a’], and [’A’, ’a’] ought to be considered equivalent with respect to
the inferred type class instance for [Char]. But after all, equivalent with respect
to a type class instance is not the same as semantically equal, and we want to
keep that distinction in our reasoning. For example, we want to still be able
to observe that applying (the container morphism corresponding to) reverse to
[’a’, ’A’] gives [’A’, ’a’], and not [’a’, ’a’] or [’A’, ’A’].

After having made and justified these important decisions, we can set up a pair
of functions between Eq-container values and lists satisfying similar properties
as the pair of functions � and �−1 defined in Lemma 1.

Lemma 3. For each type τ that is an instance of Eq, the instantiations of the
functions �Eq and (�Eq)−1 defined as

�Eq :: Eq α⇒ CEq(α)→ [α]
�Eq (n,∼=, f) = map f [0 .. (n− 1)]

(�Eq)−1 :: Eq α⇒ [α]→ CEq(α)
(�Eq)−1 xs = (length xs, ker∼=α (xs !!), xs !!)

satisfy the following three properties:

1. (�Eq ◦ (�Eq)−1) = id [τ ]

2. ((�Eq)−1 ◦ �Eq) ⊆ ≡CEq(τ),
where ≡CEq(τ) = {((n,∼=, f), (n,∼=′, f ′)) | ∀i ∈ n. f i = f ′ i}

3. ∀(n,∼=, f), (n′,∼=′, f ′) ∈ CEq(τ).
(n,∼=, f) ≡CEq(τ) (n′,∼=′, f ′) iff �Eq (n,∼=, f) = �Eq (n′,∼=′, f ′)

Proof. The proofs of properties (1)–(3) are similar to the proof of Lemma 1. An
important aspect to show is that indeed ((�Eq)−1 xs) ∈ CEq(τ) for every xs :: [τ ],
particularly so for condition (1) from Definition 1. But the required statement is
obtained relatively directly from the definition of (�Eq)−1.

Now, appropriate morphisms between Eq-container values, and their applica-
tion, are defined as follows.

Definition 2. An Eq-container morphism (s, P ) is a family of pairs (s
∼=
n , P

∼=
n )

n∈Nat,∼=∈E(Nat) such that s
∼=
n :: Nat and P

∼=
n :: Nat → Nat a partial function

with (P
∼=
n i) ∈ n for every i ∈ s∼=n .

The intuitions for s
∼=
n and P

∼=
n are as for ordinary container morphisms before,

except that now both can depend on the new parameter ∼= in addition to n. After
all, we need to be prepared for the fact that the behaviour (i.e., determining



the length of the output list and the distribution of elements in it) of a function
involving equivalence tests cannot anymore be described by just inspecting the
input list length. In addition, information about such equivalence tests may have
to be accessed.

Definition 3. Let (n,∼=, f) be an Eq-container value and (s, P ) an Eq-container
morphism. The application of (s, P ) to (n,∼=, f) is defined as

(s, P ) (n,∼=, f) = (s
∼=
n , ker∼= P

∼=
n , f ◦ P

∼=
n )

The first and last components of the output triple are analogous to the ordinary
case without element tests. For the middle component, we capture the position-
wise equivalence of output list elements in terms of the mapping to input positions
and what we know about, again position-wise, equivalence of input list elements.

The following lemma states the well-behavedness of the notions defined above.

Lemma 4. Let τ be a type that is an instance of Eq. Let c ∈ CEq(τ) and let m
be an Eq-container morphism. Then we have (m c) ∈ CEq(τ).

Proof. The critical point to prove is the condition (1) from Definition 1 on the
content function of the resulting container value. Let c = (n,∼=, f) and m = (s, P ).
We have (m c) = (s

∼=
n , ker∼= P

∼=
n , f ◦ P

∼=
n ) and hence need to show that

(ker∼=τ (f ◦ P∼=n )|s∼=n ) = ((ker∼= P
∼=
n ) ∩ (s

∼=
n × s

∼=
n ))

is satisfied. But that is an easy exercise, using (ker∼=τ f |n) = (∼= ∩ (n× n)).

Comparing the definitions of morphisms on ordinary container values and on
Eq-container values, we can easily translate the former ones into the latter ones.

Note 1. Every (ordinary) container morphism (sn, Pn)n∈Nat can be viewed as
the Eq-container morphism (sn, Pn)n∈Nat,∼=∈E(Nat).

To verify that our definitions of Eq-container values and Eq-container mor-
phisms are useful when reasoning about strict-Haskell functions of type Eq α⇒
[α] → [α], we need results similar to Theorem 1, Corollary 1, and Lemma 2.
Indeed, such results are possible and given below.

Theorem 2. For every function g :: Eq α⇒ [α]→ [α], there exists an Eq-con-
tainer morphism (s, P ) such that g ◦ �Eq = �Eq ◦ (s, P ).

Proof. Let g :: Eq α⇒ [α]→ [α]. Then the free theorem for g’s type tells us that
g (map h l) = map h (g l) for every choice of types τ1, τ2 that are instances of Eq ,
function h :: τ1 → τ2, and list l :: [τ1], provided that (ker∼=τ2 h) = ∼=τ1 and that h

is defined for all elements of l. Now, let (n,∼=, f) ∈ CEq(τ). By the definition of Eq-
container values, we know that the function f satisfies (ker∼=τ f |n) = (∼=∩(n×n)).
So for h = f |n, τ1 = n, ∼=τ1 = (∼= ∩ (n× n)), and τ2 = τ we can apply the free



theorem above and obtain g (map f |n l) = map f |n (g l) for every list l :: [n].
Hence, we can reason similarly to the proof of Theorem 1 as follows:3

g∼=τ (�Eq (n,∼=, f)) = g∼=τ (map f [0 .. (n− 1)])

= g∼=τ (map f |n [0 .. (n− 1)])

= map f |n (g∼=∩(n×n) [0 .. (n− 1)])

= �Eq ((�Eq)−1 (map f |n (g∼=∩(n×n) [0 .. (n− 1)])))

= �Eq (length (g∼=∩(n×n) [0 .. (n− 1)]),
ker∼=τ (f |n ◦ ((g∼=∩(n×n) [0 .. (n− 1)]) !!)),
f |n ◦ ((g∼=∩(n×n) [0 .. (n− 1)]) !!))

= �Eq ((s, P ) (n,∼=, f))

where we set

(s, P ) = (length (g∼=∩(n×n) [0 .. (n−1)]), (g∼=∩(n×n) [0 .. (n−1)]) !!)n∈Nat,∼=∈E(Nat)

and use

f ◦ ((g∼=∩(n×n) [0 .. (n− 1)]) !!) = f |n ◦ ((g∼=∩(n×n) [0 .. (n− 1)]) !!)

as well as

ker∼= ((g∼=∩(n×n) [0 .. (n− 1)]) !!) = ker∼=τ (f |n ◦ ((g∼=∩(n×n) [0 .. (n− 1)]) !!))

These two statements used here are true since g∼=∩(n×n) [0 .. (n−1)] :: [n] contains
only elements from 0 to n− 1 and since, for the second statement, we know that
(ker∼=τ f |n) = (∼= ∩ (n× n)).

Corollary 2. For every function g :: Eq α⇒ [α]→ [α], there exists an Eq-con-
tainer morphism (s, P ) such that g = �Eq ◦ (s, P ) ◦ (�Eq)−1.

Proof. By Theorem 2 and Lemma 3(1).

Lemma 5. Let g, g′ :: Eq ⇒ [α] → [α]. Let (s, P ), (s′, P ′) be Eq-container
morphisms such that g = �Eq ◦ (s, P ) ◦ (�Eq)−1 and g′ = �Eq ◦ (s′, P ′) ◦
(�Eq)−1. Then we have g ◦ g′ = �Eq ◦ (s, P ) ◦ (s′, P ′) ◦ (�Eq)−1.

Proof. Similarly to the proof of Lemma 2.

We have now established all the formal setup that is required for reasoning
about functions of type Eq ⇒ [α]→ [α] by instead reasoning about Eq-container
morphisms. To manifest this with some examples, consider first the following
container morphism versions of nub and rmSingles, where the first of these
functions removes duplicates from a list and the second one throws away each
element that appears only once in a given list (in both cases, ultimately with
respect to an equivalence relation provided via a type class instance for Eq , of
course):

3 To highlight the changes of the equivalence relation that g uses, we have throughout
subscripted each instance of g with the equivalence relation it actually works with.



nubc = (s
∼=
n , P

∼=
n )n∈Nat,∼=∈E(Nat)

with s
∼=
n = |n/∼=| and
P
∼=
n = λi→ min{j : |{[k]∼= : k ≤ j}| = i+ 1}

rmSinglesc = (s
∼=
n , P

∼=
n )n∈Nat,∼=∈E(Nat)

with s
∼=
n =

∑
e∈n/∼=,|e|>1 |e| and

P
∼=
n = λi→ min{j : |{j′ ∈

⋃
e∈n/∼=,|e|>1 e : j′ ≤ j}| = i+ 1}

Note that we use standard notations n/∼= for factorisation with respect to an
equivalence relation and [k]∼= for building equivalence classes.

As already noticed, we can view “ordinary” container morphisms as Eq-con-
tainer morphisms as well. For an example, we give the application of initc to an
Eq-container value. As we use them in the following examples of proofs, we show
the result of applying nubc and rmSinglesc , in general, as well.

initc (n,∼=, f) = (n− 1,∼=, f)

nubc (n,∼=, f) = (|n/∼=|, id , λi→ f (min{j : |{[k]∼= : k ≤ j}| = i+ 1}))
rmSinglesc (n,∼=, f) = (

∑
e∈n/∼=,|e|>1 |e|,

ker∼= (λi→ min{j : |{j′ ∈
⋃
e∈n/∼=,|e|>1 e : j′ ≤ j}|

= i+ 1}),
λi→ f (min{j : |{j′ ∈

⋃
e∈n/∼=,|e|>1 e : j′ ≤ j}|

= i+ 1}))

Note that we used algebraic simplifications like that (ker∼= id) is ∼= and that the
kernel of an (up to the relevant ∼=) injective function is the identity.

Let us now demonstrate the usefulness of reasoning with our extended con-
tainer notions, based on three examples.

An example proof with Eq-container morphisms. We wish to show that
nub ◦ init always returns a prefix of the result of just nub. Using our new setup,
we can do this by showing that for every Eq-container value c,

prefix ((nubc ◦ initc) c) (nubc c) (2)

holds, where prefix is defined by

prefix (n1,∼=1, f1) (n2,∼=2, f2) ⇔ n1 ≤ n2 ∧ ∀i ∈ n1. f1 i = f2 i

To prove the desired statement, we take an arbitrary Eq-container value
c = (n,∼=, f) and first calculate both arguments to prefix in (2) above. We get

nubc (initc (n,∼=, f))

= nubc (n− 1,∼=, f)

= (|(n− 1)/∼=|, id , λi→ f (min{j : |{[k]∼= : k ≤ j}| = i+ 1}))

and

nubc (n,∼=, f) = (|n/∼=|, id , λi→ f (min{j : |{[k]∼= : k ≤ j}| = i+ 1}))

To verify the prefix property, we then have to establish the following statements:



1. |(n− 1)/∼=| ≤ |n/∼=|
2. ∀i ∈ |(n− 1)/∼=|. f (min{j : |{[k]∼= : k ≤ j}| = i+ 1}) = f (min{j : |{[k]∼= :
k ≤ j}| = i+ 1})

of which the first is a simple property of factorisation (of a subset, with respect to
the same equivalence relation), and of which the second is a syntactic tautology.

Another example proof. We wish to show that rmSingles ◦ nub always
returns an empty list. Using our new setup, we can do this by showing that for
every Eq-container value c, the container value (rmSinglesc ◦ nubc) c has 0 in
its length component. So let c = (n,∼=, f) be an Eq-container value. Then:

rmSinglesc (nubc (n,∼=, f))

= rmSinglesc (|n/∼=|, id , λi→ f (min{j : |{[k]∼= : k ≤ j}| = i+ 1}))

= (
∑

e∈|n/∼=|/id ,|e|>1

|e|, · · ·, · · ·)

= (0, · · ·, · · ·)

And yet another example proof. We wish to show that nub is idempotent,
i.e., nub ◦ nub = nub. Using our new setup, we can do this by showing that
nubc ◦ nubc = nubc . So let c = (n,∼=, f) be an Eq-container value. Then:

nubc (nubc (n,∼=, f))

= nubc (|n/∼=|, id , h)

with h = λi→ f (min{j : |{[k]∼= : k ≤ j}| = i+ 1})
= (||n/∼=|/id |, id , λi→ h (min{j : |{[k]id : k ≤ j}| = i+ 1}))
= (|n/∼=|, id , h)

= nubc (n,∼=, f)

where except for the next-to-last one all steps are simply by applying definitions.
That one interesting step is valid by |m/id | = m for every m ∈ Nat,4 and by the
fact that for every i ∈ Nat,

min{j : |{[k]id : k ≤ j}| = i+ 1} = min{j : |{{k} : k ≤ j}| = i+ 1}
= min{j : |{{0}, {1}, . . . , {j}}| = i+ 1}
= i

3.2 The Type Class Ord

As a second example for the adjustment of the container notions to type classes,
we consider the type class Ord . Similarly to the adjustment for the type class Eq ,

4 Note that our notation overloading is at work here, according to which m ∈ Nat can
represent the actual number m in one context and the set of numbers {0, . . . ,m− 1}
in another context.



the container values and container morphisms have to be aware of the operation(s)
now available on the formerly completely polymorphic list content. We use an
approach analogous to that in Section 3.1, but replace equivalence relations by
total preorders. We use O(M) to denote the class of all total preorders over a set
M . For simplicity of notation, we freely regard a total preorder � on a subset n
of Nat as the total preorder � ∪ {(i, j) | (i ∈ n ∧ n ≤ j) ∨ (n ≤ i ≤ j)} on Nat
when appropriate.

As the remaining definitions, results, and proofs are in close analogy to the
ones for the type class Eq , we will give them in condensed form only, and omit all
proofs. For a type τ that is an instance of Ord , we denote by �τ the corresponding
fixed (in a given program) total preorder:

�τ = {(x, y) | x :: τ, y :: τ, (x<= y) = True}

Definition 4. Let τ be some type that is an instance of Ord. An Ord -container
value of type τ is a triple (n,�, f) with n :: Nat, � ∈ O(Nat), and f :: Nat→ τ
a partial function such that (ker�τ f |n) = (� ∩ (n × n)).5 The set of all such
container values is denoted by COrd(τ).

Definition 5. We define functions �Ord and (�Ord)−1 as

�Ord :: Ord α⇒ COrd(α)→ [α]

�Ord (n,�, f) = map f [0 .. (n− 1)]

(�Ord)−1 :: Ord α⇒ [α]→ COrd(α)

(�Ord)−1 xs = (length xs, ker�α (xs !!), xs !!)

Definition 6. An Ord -container morphism (s, P ) is a family of pairs (s�n , P
�
n )

n∈Nat,�∈O(Nat) such that s�n :: Nat and P�n :: Nat → Nat a partial function
with (P�n i) ∈ n for every i ∈ s∼=n .

Definition 7. Let (n,�, f) be an Ord-container value and (s, P ) an Ord-con-
tainer morphism. The application of (s, P ) to (n,�, f) is defined as

(s, P ) (n,�, f) = (s�n , ker� P
�
n , f ◦ P�n )

Theorem 3. For every function g :: Ord α ⇒ [α] → [α], there exists an Ord-
container morphism (s, P ) such that g = �Ord ◦ (s, P ) ◦ (�Ord)−1.

Lemma 6. Let g, g′ :: Ord ⇒ [α] → [α]. Let (s, P ), (s′, P ′) be Ord-container
morphisms such that g = �Ord ◦ (s, P ) ◦ (�Ord)−1 and g′ = �Ord ◦ (s′, P ′) ◦
(�Ord)−1. Then we have g ◦ g′ = �Ord ◦ (s, P ) ◦ (s′, P ′) ◦ (�Ord)−1.

Comparing the definitions of morphisms on ordinary container values and
on Ord -container values, we can again easily translate the former ones into the
latter ones, analogously to Note 1. Moreover, every Eq-container morphism can
be viewed as an Ord -container morphism as well.

5 Note that the kernel of a function can not only be taken over an equivalence relation.



Note 2. Every Eq-container morphism (s
∼=
n , P

∼=
n )n∈Nat,∼=∈E(Nat) can be viewed

as the Ord -container morphism (s�∩�n , P�∩�n )n∈Nat,�∈O(Nat).

Clearly, there are also Ord -container morphisms that are no ordinary container
morphisms and no Eq-container morphisms. They correspond exactly to the
functions of type Ord ⇒ [α] → [α] that are not of type Eq α ⇒ [α] → [α] (or
even of type [α]→ [α]). For example, the Haskell function

least :: Ord α⇒ [α]→ [α]
least [ ] = [ ]
least (x : xs) = [go x xs]

where go x [ ] = x
go x (y : ys) = go (if x<= y then x else y) ys

corresponds to:

leastc = (s�n , P
�
n )n∈Nat,�∈O(Nat)

with s�n = min{n, 1} and

P�n = λi→ min{j : ∀k ∈ (n \ j). j � k}

4 Conclusion and Future Work

We have extended the ellipsis [4] or container [7] technique for reasoning about
functions on lists to the case of the presence of element tests. The key insight
was to use, in the proofs of Theorems 2 and 3, an extension of free theorems [8,9]
to ad-hoc polymorphism à la type classes [10]. An obvious goal for future work
is to see what needs to be done to make reasoning with our refined container-
related notions, as we have performed on examples by hand, more effective and
mechanisable. Just as the techniques of Bundy and Richardson [4] and Prince
et al. [7] have to rely on good proof tactics for arithmetics, our method will have
to rely on tactics that additionally take properties of equivalence relations and
total preorders into account, and that can exploit algebraic notions like the kernel
of a function over a relation, etc.

Another issue is that of transforming function definitions we want to reason
about into suitable container morphism representations in the first place. As
we have seen with examples like rmSinglesc , describing a structure change as a
result of element tests can be somewhat involved to express by a mathematical
formula. Only more practical experience will be able to tell how problematic
that really is. Note, though, that container morphism representations need not
necessarily be provided by the “customer” of a proof system. Indeed, in Bundy
and Richardson’s setup the container versions of list functions were used internally
only, not exposed to the user.

How about further extensions? We have already mentioned that moving from
lists to a broader range of data structures is largely orthogonal to taking element
tests into account. A more challenging extension is to treat other type classes than
Eq and Ord . The framework of free theorems is readily available for other type



classes as well. However, finding the right abstractions and morphism notions
may appear to require new insights for each new class. For example, while both
Eq and Ord mathematically correspond to relations, or to ways of observing
elements of an unspecified type, what about type classes that provide ways of
constructing elements via some operations, say class Monoid? Interestingly, recent
work by Bernardy et al. [3] could shed some light here. For the purpose of testing
(not verification), they essentially characterise polymorphic functions in terms of
monomorphic inputs, such as characterising a function of type [α]→ [α] in terms
of its action on integer lists of the form [1 .. n]. For more complicated types, in
particular higher-order ones, they work from a classification of function arguments
(typically themselves functions) into observers and constructors, and describe a
methodology for finding fixed types and monomorphic inputs that completely
determine a function’s behaviour. Via the dictionary translation method, type
class constraints lead to precisely such different kinds of function arguments, so
there is a good chance for leverage here.
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