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Abstract

Several induction theorem provers were developed to verify functional
programs mechanically. Unfortunately, automatic verification often fails for
functions with accumulating arguments. Using concepts from the theory
of tree transducers and extending on earlier work, the paper develops au-
tomatic transformations from accumulative functional programs into non-
accumulative ones, which are much better suited for mechanized verification.
The overall goal is to reduce the need for generalizing induction hypotheses
in (semi-)automatic provers. Via the correspondence between imperative pro-
grams and tail-recursive functions, the presented approach can also help to
reduce the need for inventing loop invariants in the verification of imperative
programs.

1 Introduction

Automatic transformation of programs is a key technology in software engineering,
as it enables programmers to work at a higher level of abstraction than would oth-
erwise be possible and thus raises their productivity. Another important trend, in
particular for safety-critical applications, is formal verification of programs. This
paper combines these two paradigms, employing an automatic program transforma-
tion to improve the amenability of programs to automatic verification. So while
most classical program transformations aim at improving the efficiency, our goal is
to develop transformations which improve the provability.

To automate correctness proofs about programs as much as possible, several pow-
erful induction theorem provers have been developed, which can be used for mecha-
nized reasoning about program properties (e.g., NQTHM [BM79], ACL-2 [KMM00],
RRL [KZ95], CLAM [BSH+93, Bun01], INKA [AHMS99, Wal94], SPIKE [BR95]).
While their most successful application area is that of functional programming, such
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Section 1 Introduction

provers can in principle also be used for the verification of imperative programs. To
this end, imperative programs are translated into the functional input language of
induction provers. Unfortunately, this leads to a certain form of programs that poses
severe problems for the existing provers.

As an example, we consider the calculation of a decreasing list containing the
first x1 even numbers (i.e., [2 · x1 − 2, . . . , 4, 2, 0]). This problem can be solved by
the following part peven of an imperative program (in C-like syntax [KR88]):

[int] even (int x1)

{ int y1 = 0; [int] y2 = [];

while (x1!=0) { y2 = y1:y2; y1 = y1+2; x1--; };

return y2; }

Here, [int] denotes the type of integer lists, [] denotes the empty list, and :

denotes list insertion, i.e., y1 : y2 inserts the element y1 in front of the list y2. In
the absence of pointers, as above, imperative programs can easily be translated into
functional ones by transforming every while-loop into a separate function whose
parameters record the changes during a run through the while-loop [McC60]. For
our program peven we obtain the following tail-recursive program pacc (in Haskell-like
syntax [Pey03]) together with an initial call racc = (lev x1 0 [ ]). Here, “lev” stands
for “list of even numbers”. The program pacc represents natural numbers with the
constructors 0 and S for the successor function, and uses pattern matching on lev ’s
first argument, called recursion argument:

pacc : lev (S x1) y1 y2 = lev x1 (S (S y1)) (y1 : y2)
lev 0 y1 y2 = y2

The described translation of imperative into functional programs always yields tail-
recursive functions that compute their result using accumulators. Indeed, lev ac-
cumulates values in its context arguments (arguments different from the recursion
argument, i.e., lev ’s second and third argument). A function is called accumulative
if at least one of its context arguments is modified in a recursive call. For instance,
lev is accumulative because both the second and the third argument do not remain
unchanged in the recursive call. A program like pacc , containing an accumulative
function, is itself called accumulative.

Now assume that our aim is to verify the equivalence of racc and rspec = (lev2 x1)
for all natural numbers x1, where pspec is the following specification of our problem.
Here, (lev 2 x1) calculates the desired list and (doub x1) computes 2 · x1:

lev 2 (S x1) = (doub x1) : (lev2 x1) doub (S x1) = S (S (doub x1))
lev 2 0 = [ ] doub 0 = 0

Note that even if there exists such a “natural” non-accumulative recursive specifi-
cation of a problem, imperative programs are typically written using loops, which
translate into accumulative programs like pacc above. The accumulative version
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may also be more efficient than a non-accumulative implementation (see, e.g., Ap-
pendix B).

But unfortunately, accumulative programs pose serious problems for mechanized
verification. For example, an automatic proof of

lev x1 0 [ ] = lev 2 x1

by induction (using this equation for fixed x1 as induction hypothesis) fails because
in the induction step (x1 7→ (S x1)) the induction hypothesis cannot be successfully
applied to prove the equality of (lev (S x1) 0 [ ]) and (lev 2 (S x1)). The reason is that
lev uses accumulators: the context arguments of the term (lev x1 (S (S 0)) (0 : [ ])),
which originates from rule application to (lev (S x1) 0 [ ]), do not fit to the context
arguments of the term (lev x1 0 [ ]) in the induction hypothesis! So the problem is
that accumulating arguments are typically initialized with some fixed values (like
0 and [ ]), which then appear also in the conjecture to be proved and hence in the
induction hypothesis. But since accumulators are changed in recursive calls, after
rule application we have different values (like (S (S 0)) and (0 : [ ])) in the statement
to be proved in the induction step.

In induction theorem proving this problem is usually solved by transforming the
conjecture to be proved. More precisely, the aim is to invent a suitable generalization
(see, e.g., [BM79, Bun01, IB99, IS97, Wal94]). So, as a replacement for the original
conjecture, one tries to find a stronger conjecture that however is easier to prove.
In our example, the original conjecture may be generalized to

lev x1 y1 y2 = (lev ′
2 x1 y1) ++ y2 ,

where ++ denotes list concatenation and where lev ′
2 and doub′ are defined as follows:

lev ′
2 (S x1) y1 = (doub ′ x1 y1) : (lev ′

2 x1 y1)
lev ′

2 0 y1 = [ ]

doub ′ (S x1) y1 = S (S (doub ′ x1 y1))
doub ′ 0 y1 = y1

However, finding successful generalizations automatically is often very hard. The
ACL-2 prover [KMM00], for instance, performs a series of generalizations for the
above original conjecture that do not increase verifiability, and it ends up with
consuming all memory available. This corresponds to the problem of inventing
suitable loop invariants in classical approaches to direct verification of imperative
programs [Hoa69]. While there are heuristics for discovering good loop invari-
ants [IS97, SI99], in general this task is hard to mechanize [Dij85]. Since discovering
good generalizations of conjectures is equally difficult, the development of techniques
to verify accumulative functions is one of the most important research topics in the
area of inductive theorem proving [IB99].

In contrast to the classical approach of generalizing conjectures, we suggest an
automatic, semantics-preserving program transformation. It transforms functions
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Section 1 Introduction

for which conjectures are hard to verify into functions that are much more suitable
for mechanized verification. The advantage of this approach is that by transforming
a function definition the verification problems with this function are typically solved
once and for all (i.e., for all conjectures one would like to prove about this function).
This is unlike the situation when using the generalization approach, where one has
to find a new generalization for every new conjecture to be proved. In particular,
finding generalizations is very difficult for conjectures with several occurrences of an
accumulative function (see, e.g., [Gie00] and Appendices A and B).

The transformation to be presented in this paper transforms the original program
pacc with initial call racc into the following equivalent program pnon :

pnon : lev ′ (S x1) = sub (lev ′ x1) (S (S 0)) (0 : [ ])
lev ′ 0 = [ ]

sub (x1 : x2) y1 y2 = (sub x1 y1 y2) : (sub x2 y1 y2) sub 0 y1 y2 = y1

sub (S x1) y1 y2 = S (sub x1 y1 y2) sub [ ] y1 y2 = y2

with initial call rnon = (lev ′ x1). Since pnon contains a function lev ′ without context
arguments and a function sub with unchanged context arguments in recursive calls,
pnon is a non-accumulative program and our transformation technique is called deac-
cumulation. An application (sub t s1 s2) of the substitution function sub replaces all
occurrences of 0 and [ ] in t by s1 and s2, respectively. For instance, the decreasing
list of the first three even numbers is computed by pnon as follows:

lev ′ (S3 0)
⇒4

pnon
sub (sub (sub [ ] (S2 0) (0 : [ ])) (S2 0) (0 : [ ])) (S2 0) (0 : [ ])

⇒pnon
sub (sub (0 : [ ]) (S2 0) (0 : [ ])) (S2 0) (0 : [ ])

⇒3
pnon

sub ((S2 0) : (0 : [ ])) (S2 0) (0 : [ ])

⇒7
pnon

(S4 0) : ((S2 0) : (0 : [ ]))

This computation shows that the constructors 0 and [ ] in pnon are used as “place-
holders”, which are repeatedly substituted by (S2 0) and (0 : [ ]), respectively.

Now, the statement
lev ′ x1 = lev2 x1 (1)

can be proved by three nested inductions as follows. We only give the induction
step (x1 7→ (S x1)), omitting the simple base case (x1 = 0). We have to prove
lev ′ (S x1) = lev2 (S x1). For the left-hand side lev ′ (S x1), exhaustive rewriting
with the (directed) equations from pnon and application of the induction hypothesis
(IH ) lev ′ x1 = lev2 x1 yields

lev ′ (S x1)
= sub (lev ′ x1) (S (S 0)) (0 : [ ])
= sub (lev 2 x1) (S (S 0)) (0 : [ ]). (IH )

For the right-hand side lev 2 (S x1), we obtain

lev2 (S x1) = (doub x1) : (lev2 x1).
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by rewriting. So to finish the proof, we have to show the conjecture

sub (lev 2 x1) (S (S 0)) (0 : [ ]) = (doub x1) : (lev 2 x1). (2)

Note that there is no need to invent such subgoals manually here because they
show up automatically as proof obligations during the course of the proof. For the
proof of (2), we again only give the induction step (x1 7→ (S x1)). We apply the
same strategy as above by exhaustively rewriting both sides of the equation and by
applying the induction hypothesis afterwards. For the left-hand side, this yields

sub (lev 2 (S x1)) (S (S 0)) (0 : [ ])
= sub ((doub x1) : (lev 2 x1)) (S (S 0)) (0 : [ ])
= (sub (doub x1) (S (S 0)) (0 : [ ])) : (sub (lev 2 x1) (S (S 0)) (0 : [ ]))
= (sub (doub x1) (S (S 0)) (0 : [ ])) : ((doub x1) : (lev2 x1)) (IH )

and for the right-hand side, we obtain

(doub (S x1)) : (lev2 (S x1)) = (S (S (doub x1))) : ((doub x1) : (lev2 x1)).

So to finish the proof, we have to show the conjecture

sub (doub x1) (S (S 0)) (0 : [ ]) = S (S (doub x1)). (3)

Conjecture (3) is again proved by induction. In the step case, the left-hand side is
transformed as follows:

sub (doub (S x1)) (S (S 0)) (0 : [ ])
= sub (S (S (doub x1))) (S (S 0)) (0 : [ ])
= S (S (sub (doub x1) (S (S 0)) (0 : [ ])))
= S (S (S (S (doub x1)))) (IH )

and rewriting the right-hand side yields

S (S (doub (S x1))) = S (S (S (S (doub x1)))).

Thus, Conjecture (3) is verified. This also proves (2) and the original conjecture (1).
A similar proof can also be generated automatically by existing induction theorem
provers like ACL-2, if provided with the transformed program.

In this paper we consider the definition of lev in pacc as a macro tree transducer
(for short mtt) [Eng80, EV85, FV98] with one function. In general, such a function is
defined by equations which perform a case analysis on the root symbol of its recursion
argument t. The right-hand side of such a defining equation may, beside constructors
and context arguments, only contain (extended) primitive-recursive function calls,
i.e., ones in which the function being defined is called with a recursion argument
that is a variable referring to a subtree of t. The functions lev ′ and sub together are
viewed as a 2-modular tree transducer (for short modtt) [EV91], where it is allowed
that a function in module 1 (here lev ′) calls a function in module 2 (here sub)
non-primitive-recursively.
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In [GKV03] we have simplified a decomposition technique from [KGK01], which
itself is based on results in [Eng80, EV85, EV91] and transforms mtts like lev into
modtts like lev ′ and sub without accumulators. It turned out that the programs
obtained right after decomposition are still not suitable for automatic verification.
Since their verification problems are caused only by the form of the new initial
calls, which still contain initial values, we developed another transformation step,
called (basic) constructor replacement, which yields initial calls of the innocuous form
(f ′ x1). This second transformation step, however, imposed a quite strong restriction
on the original program, namely that the initial values for the context arguments
of the function f to be transformed are pairwise distinct nullary constructors not
occurring in the right-hand sides of defining equations for f . While this restriction
is fulfilled for 0 and [ ] in the example considered above, it is not hard to envisage
other examples (cf. Section 3.2) where this is not the case, but where performing
an automatic deaccumulation to improve the suitability for verification would still
be desirable. Extending on our earlier work [GKV03], we show how to overcome
this restriction in the current paper. The idea is to allow more control to take
place in module 2 of the resulting modtt than is the case for the kind of simple
substitution function seen above. The need to determine the exact way in which this
(finite) control is to be exercised leads to an analysis problem regarding the original
program, which is solved using a fixpoint construction. Compared to the preliminary
version of this paper [GKV03], this program analysis, the advanced deaccumulation
technique based on it, and the associated correctness proofs constitute the main
additional contributions of the current article.

Also independent of the tail-recursive embedding of imperative programs, the
accumulating style is a quite common programming idiom in functional languages
(cf., e.g., Chapter 6 of [FFFK01]). Therefore, the topic of transforming accumulative
functions (not necessarily into non-accumulative ones) has received much attention
in recent years [CDPR99, HIT99, Gie00, KGF02, Sve02, Nis04, MKHT05], partly
drawing on concepts from the theory of tree transducers as well [Küh98, Küh99,
VK04, Voi04a, Voi04b]. The present work continues this line of research, with the
interesting twist that our aim is not the classical one of improving the efficiency
of programs. Choosing mtts as model for functional programs with accumulating
arguments opens the way to deal with a large class of typical functions on alge-
braic data types, which are indeed often defined by structural descent on a distin-
guished argument. For example, manipulation of abstract syntax trees in compilers
often follows the recursion scheme of mtts [Vog91, FV98], and the “tree transfor-
mation core” of XML processing languages can be compiled into compositions of
mtts [EM03, MBPS05]. Accordingly, we will demonstrate by examples that deac-
cumulation can not only be useful for functions resulting from the translation of
imperative programs, but also for accumulative functional programs in general.

Beside this introduction, the paper contains four further sections and four ap-
pendices. Section 2 introduces necessary notions and notations, our functional lan-
guage, and tree transducers. Section 3 develops basic and advanced deaccumulation.
Section 4 considers related work. Section 5 concludes with a discussion of our ap-
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proach and its implementation, and points out directions for future research. Three
additional examples demonstrating the application of our results can be found in
Appendices A, B, and C. Appendix D contains full proofs.

2 Preliminaries, Language, and Tree Transducers

We denote by
�

the set of natural numbers including 0. For every n ∈
�
, [n] denotes

the set {1, . . . , n} and [0, n] denotes the set {0}∪[n]. For every finite subset of
�
, the

mapping max gives the maximum of that subset’s elements, where by convention
max( � ) = 0. Let S be a set. We denote by S∗ the set of finite sequences of elements
of S. The power set of S is denoted by P(S). If S is finite, then the number of its
elements is denoted by |S|.

A ranked alphabet is a pair (Σ, rankΣ), where Σ is a finite set of symbols and
rankΣ assigns to each of these symbols a natural number, its rank. In the following,
we usually omit the rankΣ-function and only mention Σ when referring to a ranked
alphabet. For every k ∈

�
we define Σ(k) = {σ ∈ Σ | rankΣ(σ) = k}. The rank

k of a symbol σ is also denoted by writing σ(k). A nullary symbol is one of rank
0, a unary symbol is one of rank 1, and an n-ary symbol (with n ∈

�
) is one of

rank n. For the sake of brevity, a quantification over a symbol in a ranked alphabet
implicitly quantifies also its rank. For example, we write “for every σ ∈ Σ(k)” instead
of “for every k ∈

�
and for every σ ∈ Σ(k)”. We use the following sets of variables,

denoted by lowercase letters. Let X be the set {x1, x2, x3, . . .} of variables, and for
every k ∈

�
, Xk is the finite set {x1, . . . , xk} ⊆ X; analogously for Y . Note that

X0 = Y0 = � . For a ranked alphabet Σ and a set V of variables disjoint from Σ
we define the set TΣ(V ) of trees (or terms) over Σ indexed by V as the smallest set
T ⊆ (Σ∪V ∪{(, )})∗ such that (i) V ⊆ T and (ii) for every σ ∈ Σ(k) and t1, . . . , tk ∈ T :
(σ t1 · · · tk) ∈ T . If readability allows, outer brackets of trees are omitted. For a
unary symbol σ, n ∈

�
, and t ∈ TΣ(V ), we write (σn t) for the tree obtained by

putting n occurrences of σ on top of t. We denote TΣ( � ) by TΣ. We define the
height of a (ground) tree by height(σ t1 · · · tk) = 1 + max ({height(ti) | i ∈ [k]}) for
every σ ∈ Σ(k) and t1, . . . , tk ∈ TΣ.

Let n ∈
�
, let α1, . . . , αn ∈ Σ(0) ∪ V be pairwise distinct, and let Σ′ and V ′ be a

ranked alphabet and a set of variables, respectively, where (Σ∪Σ′)∩ (V ∪ V ′) = � .
For trees t′1, . . . , t

′
n ∈ TΣ′(V ′), the tree substitution � [α1, . . . , αn � − t′1, . . . , t

′
n] (writ-

ten postfix and also written using the alternative, set comprehension-like nota-
tion � [αi � − t′i | i ∈ [n]]), is a function mapping trees from TΣ(V ) to trees from
TΣ−{α1,...,αn}∪Σ′(V − {α1, . . . , αn} ∪ V ′). It is defined as follows:

αj[αi � − t′i | i ∈ [n]] = t′j , for all j ∈ [n]
v[αi � − t′i | i ∈ [n]] = v , for all v ∈ V − {α1, . . . , αn}

(σ t1 · · · tk)[αi � − t′i | i ∈ [n]] = σ t1[αi � − t′i | i ∈ [n]] · · · tk[αi � − t′i | i ∈ [n]] ,
for all σ ∈ (Σ − {α1, . . . , αn})

(k), t1, . . . , tk ∈ TΣ(V ).

So a tree substitution permits the replacement of both variables and constants. The
following lemma will be needed repeatedly later on.

7



Section 2 Preliminaries, Language, and Tree Transducers

Lemma 2.1 (properties of tree substitutions)
Let Σ be a ranked alphabet, V be a set of variables disjoint from Σ, n ∈

�
, and

α1, . . . , αn ∈ Σ(0) ∪ V be pairwise distinct. For every t, t1, . . . , tn, t′1, . . . , t
′
n ∈ TΣ(V ):

1. t[αi � − αi | i ∈ [n]] = t,

2. t[αi � − ti | i ∈ [n]][αj � − t′j | j ∈ [n]] = t[αi � − ti[αj � − t′j | j ∈ [n]] | i ∈ [n]],
and

3. t[αi � − βi | i ∈ [n]][βi � − ti | i ∈ [n]] = t[αi � − ti | i ∈ [n]] for pairwise distinct
β1, . . . , βn ∈ Σ(0) that do not occur in t.

Proof
Straightforward, by induction on the structure of t. �

We consider a simple first-order, constructor-based functional programming lan-
guage P as source and target language for the transformations. Every program
p ∈ P consists of some modules. In every module some functions are defined by
complete case analysis on the first argument (recursion argument) via pattern match-
ing, where only flat patterns of the form (c x1 . . . xk) for constructors c and variables
xi are allowed. The other arguments are called context arguments. If, in a right-hand
side of a function definition, there is a call of a function that is defined in the same
module, then the first argument of this function call has to be a subtree xi of the
first argument in the corresponding left-hand side. To ease readability, we choose an
untyped ranked alphabet Cp of constructors, which is used to build up input trees
and output trees (i.e., results) of every function in p. In example programs and
transformations we sometimes relax the completeness of function definitions on TCp

by leaving out those equations which are not intended to be used in evaluations.

Definition 2.2 (program, module, function definition, rhs ������� � , RHS)
Let C and F be ranked alphabets of constructors and defined function symbols,

respectively, such that F (0) = � , and X, Y , C, F are pairwise disjoint. We define
the sets P , M , D, R of programs, modules, function definitions, and right-hand sides
as follows. Here, p, m, d, r, c, and f (also equipped with indices) range over the
sets P , M , D, R, C, and F , respectively.

p ::= m1 · · ·ml (program)
m ::= d1 · · ·dh (module)
d ::= f (c1 x1 · · ·xk1) y1 · · · yn = r1 (function definition)

· · ·
f (cq x1 · · ·xkq

) y1 · · ·yn = rq

r ::= xi | yj | c r1 · · · rk | f r0 r1 · · · rn (right-hand side)

The sets of constructors, defined function symbols, and modules that occur in p ∈ P
are denoted by Cp, Fp, and Mp, respectively. For every f ∈ Fp, there is exactly one
m ∈ Mp and exactly one function definition d in m such that f is defined in d. The
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set of functions defined in m ∈ Mp is denoted by Fm. For every m ∈ Mp, f ∈ F
(n+1)
m ,

and c ∈ C
(k)
p , there is exactly one equation of the form

f (c x1 · · ·xk) y1 · · · yn = rhsp,f,c ,

where rhsp,f,c ∈ RHS (Fm, Cp∪Fp−Fm, Xk, Yn). Here, for every F ′ ⊆ F , C ′ ⊆ C∪F ,
X ′ ⊆ X, and n ∈

�
, RHS (F ′, C ′, X ′, Yn) is the smallest set RHS ⊆ TF ′∪C′(X ′ ∪ Yn)

such that:

− Yn ⊆ RHS ,

− for every c ∈ C ′(a) and r1, . . . , ra ∈ RHS : (c r1 . . . ra) ∈ RHS , and

− for every f ∈ F ′(a+1), xi ∈ X ′, and r1, . . . , ra ∈ RHS : (f xi r1 . . . ra) ∈ RHS . 3

Note that, in addition to constructors, defined function symbols may also be con-
tained in the second argument C ′ of RHS in the previous definition. The functions
in C ′ may then be called with arbitrary arguments in right-hand sides, whereas in
calls of functions from F ′ − C ′, the recursion argument must be an xi.

Example 2.3 (the introductory example formalized in our language)
Consider the programs pacc and pnon from the introduction. Then:

− pacc ∈ P , where Mpacc
contains one module macc,lev with the definition of lev ,

and

− pnon ∈ P , where Mpnon
contains two modules mnon ,lev ′ and mnon ,sub , defining lev ′

and sub, respectively. 3

For every program p ∈ P , its evaluation (possibly on terms containing variables)
is described by a (nondeterministic) reduction relation ⇒p on TCp∪Fp

(Y ), defined
in the usual way by interpreting defining equations as rewrite rules [BN98]. We
consider only terminating programs, i.e., ones for which there is no infinite chain
s1 ⇒p s2 ⇒p s3 ⇒p · · ·. By their definition, programs in P never contain critical
pairs, hence ⇒p is also confluent. As a consequence, for every s ∈ TCp∪Fp

(Y ) there is
a unique normal form with respect to ⇒p, denoted by nfp(s). By the completeness
of function definitions, any element of TCp∪Fp

− TCp
cannot be a normal form with

respect to ⇒p. Consequently, nfp(s) ∈ TCp
for every s ∈ TCp∪Fp

.
Before introducing the classes of tree transducers relevant for this paper, we con-

sider a special kind of program modules which will be needed for our deaccumulation
technique.

Definition 2.4 (induced sub-module)
Let C ′ ⊆ C, sub ∈ F (n+1), and let π1, . . . , πn ∈ (C −C ′)(0) be pairwise distinct. The
sub-module induced by C ′ and π1, . . . , πn consists of the following defining equations:

sub πj y1 · · · yn = yj , for every j ∈ [n]
sub (c x1 · · ·xk) y1 · · · yn = c (sub x1 y1 · · ·yn) · · · (sub xk y1 · · · yn) ,

for every c ∈ C ′(k). 3
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Section 2 Preliminaries, Language, and Tree Transducers

For example, the function sub from the program pnon in the introduction represents
the sub-module induced by C ′ = {:(2), S(1)} and π1 = 0, π2 = [ ].

A function like sub and the corresponding π1, . . . , πn are called substitution func-
tion and substitution constructors, respectively. The following lemma shows that
the evaluation of a term sub s s1 · · · sn replaces all occurrences of πj in s by sj, for
all j ∈ [n].

Lemma 2.5 (semantics of substitution functions)
Let p ∈ P , sub ∈ F

(n+1)
p , and let π1, . . . , πn ∈ C

(0)
p be pairwise distinct. If p

contains the sub-module induced by Cp−{π1, . . . , πn} and π1, . . . , πn, then for every
s, s1, . . . , sn ∈ TCp∪Fp

:

nfp(sub s s1 · · · sn) = nfp(s)[πj � − nfp(sj) | j ∈ [n]].

Proof
Straightforward, by induction on the structure of nfp(s) ∈ TCp

. �

Some further useful information about substitution functions can be derived by
additionally taking properties of tree substitutions into account.

Lemma 2.6 (properties of substitution functions)
Let p ∈ P , sub ∈ F

(n+1)
p , and let π1, . . . , πn ∈ C

(0)
p be pairwise distinct. If p

contains the sub-module induced by Cp−{π1, . . . , πn} and π1, . . . , πn, then for every
s, s1, . . . , sn, s′1, . . . , s

′
n ∈ TCp∪Fp

:

1. nfp(sub s π1 · · ·πn) = nfp(s),

2. nfp(sub (sub s s1 · · · sn) s′1 · · · s
′
n)

= nfp(sub s (sub s1 s′1 · · · s
′
n) · · · (sub sn s′1 · · · s

′
n)) , and

3. nfp(sub s s1) = (cz1+z2 π1), if n = 1 and nfp(s) = (cz1 π1), nfp(s1) = (cz2 π1)

for some c ∈ C
(1)
p and z1, z2 ∈

�
.

Proof
Straightforward, using Lemma 2.5 and statements 1 and 2 of Lemma 2.1. �

Since we will present our deaccumulation technique only for modules defining exactly
one function, we also project this restriction on the respective macro tree transducers.
In the literature [Eng80, EV85], more general instances are studied which allow
mutual recursion. Our transformations could also be defined for this case, but only
with a considerable presentational overhead we seek to avoid here. The intermediate
stages and final outputs of our transformation technique will be specialized modular
tree transducers [EV91]. We only introduce the required special cases rather than
the general concept, again to simplify the presentation. Of course, the proofs in the
literature about termination of the reduction relations induced by the tree transducer
models under consideration carry over to our special cases. In contrast to (some of)
the literature, we include an initial call in the definition of tree transducers which has
the form of a right-hand side. Example 2.8 will illustrate the different classes of tree
transducers, as well as the syntactic restrictions which are additionally introduced
in the following definition.
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Definition 2.7 (special mtts and modtts, and restrictions on them)
Let p ∈ P .

− A pair (m, r) with m ∈ Mp, |Fm| = 1, and r ∈ RHS (Fm, Cp, X1, Y0) is called a

one-state macro tree transducer of p (for short 1-mtt of p) if for every c ∈ C
(k)
p

we have rhsp,f,c ∈ RHS ({f}, Cp, Xk, Yn), where Fm = {f (n+1)}.

Thus, the single function f defined in module m may call itself in a primitive-
recursive way, but it does not call any functions from other modules. Moreover,
the initial call r is a term built from f , constructors, and the variable x1 as first
argument of all subterms rooted with f .

− A triple (m1, m2, r) with m1, m2 ∈ Mp and |Fm1 | = 1 is called non-accumulative
modular tree transducer of p (for short nmodtt of p) if:

1. Fm1 = F
(1)
m1 and Fm2 = F

(n+1)
m2 for some n ∈

�
,

2. for f ∈ Fm1 and every c ∈ C
(k)
p : rhsp,f,c ∈ RHS (Fm1 , Cp ∪ Fm2 , Xk, Y0),

3. for every g ∈ Fm2 and c ∈ C
(k)
p with k > 0 we have

rhsp,g,c = c (g1 x1 y1 · · ·yn) · · · (gk xk y1 · · · yn)

for some (not necessarily pairwise distinct) g1, . . . , gk ∈ Fm2 ,

4. for every g ∈ Fm2 and c ∈ C
(0)
p we have rhsp,g,c ∈ {c} ∪ Yn,

5. r ∈ RHS (Fm1 , Cp ∪ Fm2 , X1, Y0).

Thus, the single function f defined in module m1 is unary. In its right-hand
sides, it may call itself primitive-recursively and it may call the functions defined
in module m2, all of which have the same rank, with arbitrary arguments. The
function definitions in m2 have a special form in that non-nullary constructors
c in the input are reproduced in the output and their subtrees are traversed in
order with unchanged context arguments, whereas nullary constructors c in the
input are either also reproduced or replaced by one of the context arguments.
The initial call r is as for 1-mtts, but it may also contain the functions defined
in m2.

− An nmodtt (m1, m2, r) of p with |Fm2 | = 1 is called a substitution modular tree
transducer of p (for short smodtt of p) if there are pairwise distinct π1, . . . , πn ∈

C
(0)
p , where the single function in Fm2 has rank n + 1, such that:

1. m2 is the sub-module induced by Cp − {π1, . . . , πn} and π1, . . . , πn.

2. r ∈ RHS (Fm1 , Cp − {π1, . . . , πn} ∪ {sub}, X1, Y0).

Thus, the single function definition in m2 now has the even more specialized
form of a substitution function, and the initial call r may not contain the cor-
responding substitution constructors.

11



Section 3 Deaccumulation

− A 1-mtt (m, r) of p is called nullary constructor distinct (for short ncd) if there

are pairwise distinct c1, . . . , cn ∈ C
(0)
p such that r = (f x1 c1 . . . cn), where Fm =

{f}, and c1, . . . , cn do not occur in right-hand sides of the function definition
in m.

An smodtt (m1, m2, r) of p is called ncd if r = (sub (f x1) c1 . . . cn) with pairwise

distinct c1, . . . , cn ∈ C
(0)
p −{π1, . . . , πn} that do not occur in right-hand sides of

the definition of f in m1.

− An nmodtt (m1, m2, r) of p is called initial value free (for short ivf ) if r = (f x1),
where Fm1 = {f}. 3

Example 2.8 (Example 2.3 continued)
Consider the programs pacc and pnon from the introduction, and their modules
macc,lev , mnon ,lev ′ , and mnon ,sub as identified in Example 2.3. Then:

− (macc,lev , racc) with initial call racc = (lev x1 0 [ ]) is a 1-mtt of pacc that is ncd.

− Our basic transformation, to be presented in Section 3.1, consists of the two
steps “decomposition” and “constructor replacement”. Decomposition trans-
forms pacc into a program pdec ∈ P containing the following two modules mdec,lev ′

and mdec,sub :

lev ′ (S x1) = sub (lev ′ x1) (S (S π1)) (π1 : π2)
lev ′ 0 = π2

sub (x1 : x2) y1 y2 = (sub x1 y1 y2) : (sub x2 y1 y2) sub [ ] y1 y2 = [ ]
sub (S x1) y1 y2 = S (sub x1 y1 y2) sub π1 y1 y2 = y1

sub 0 y1 y2 = 0 sub π2 y1 y2 = y2

Here, (mdec,lev ′ , mdec,sub , rdec) with initial call rdec = (sub (lev ′ x1) 0 [ ]) is an
smodtt (and hence also an nmodtt) of pdec that is ncd, but not ivf.

− (mnon ,lev ′ , mnon ,sub , rnon) with initial call rnon = (lev ′ x1) is an smodtt (with
n = 2, π1 = 0, and π2 = [ ]) of pnon that is ivf. 3

3 Deaccumulation

To improve verifiability, we transform accumulative programs into non-accumula-
tive programs by transforming 1-mtts into ivf nmodtts. The defined functions of the
resulting programs have no context arguments at all or they have context arguments
that are not accumulating. Moreover, the resulting initial calls have no (initial values
in) context argument positions. In Section 3.1, we present a first deaccumulation
technique for 1-mtts that are ncd. Section 3.2 introduces a deaccumulation technique
which can also handle many 1-mtts that are not ncd.

12



3.1 Basic Deaccumulation

3.1 Basic Deaccumulation

Conceptually, the transformation proceeds in two steps: “decomposition” (Sec-
tion 3.1.1) and “constructor replacement” (Section 3.1.2). For the extension pre-
sented in Section 3.2 we will integrate the two steps into a single one.

3.1.1 Decomposition

In [Eng80, EV85, EV91] it was shown that every mtt (with possibly several functions
of arbitrary ranks) can be decomposed into a top-down tree transducer (an mtt
with unary functions only [Rou70, Tha70, Eng75]) plus a substitution device. In
this paper we use a modification of this result, integrating the constructions of
Lemmas 21 and 23 in [KGK01]. The key idea is to simulate an (n + 1)-ary function
f by a new unary function f ′. To this end, all context arguments are deleted
and only the recursion argument is maintained. Since f ′ does not know the actual
values of its context arguments, it uses a new constructor πj whenever f uses its
j-th (formal) context argument. For this purpose, every occurrence of yj in the
right-hand sides of equations for f is replaced by πj. The current (actual) context
arguments are integrated into the calculation by replacing every term of the form
(f xi · · ·) in a right-hand side or in the initial call by (sub (f ′ xi) · · ·) for an
appropriate substitution function. As explained before, (sub t s1 · · · sn) replaces
every πj in the first argument t of sub by the j-th context argument sj.

The essence of this transformation can also be stated in terms of f alone: a
computation of f with arbitrary context arguments can always be simulated by a
computation of f with the particular context arguments π1, . . . , πn as placeholders,
which are only afterwards substituted with the appropriate values. Since the com-
putation of f in this simulation is performed with such fixed placeholders, it can
just as well be performed by a unary function. The following lemma is proved in
Appendix D using Lemma 2.1(3) and Lemma 2.5.

Lemma 3.1 (key to the decomposition transformation)
Let p ∈ P and (m, r) be a 1-mtt of p, where Fm = {f (n+1)}. Further, let p′ ∈ P

with Cp′ = Cp ∪ {π
(0)
1 , . . . , π

(0)
n } for pairwise distinct π1, . . . , πn /∈ Cp, and sub ∈

F
(n+1)
p′ . Let p′ contain (at least) the sub-module induced by Cp and π1, . . . , πn, and

a module m′ with all defining equations from m and additional equations of the
form “f πj y1 · · · yn = . . .” that define f for the new constructors π1, . . . , πn such
that (m′, r) is a 1-mtt of p′. Then for every t ∈ TCp

and s1, . . . , sn ∈ TCp′∪Fp′
:

nfp′(f t s1 · · · sn) = nfp′(sub (f t π1 · · ·πn) s1 · · · sn). �

The following transformation and lemma formalize the above intuitions. Moreover,
we will show that the ncd property is carried over from the original to the decom-
posed tree transducer. Note that the transformation retains the defining equations
of f from the original program. This is necessary because f may be called from other
modules. When giving examples, we do not show such retained function definitions.
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Section 3 Deaccumulation

Transformation 3.2 (decomposition)
Let p ∈ P and (m, r) be a 1-mtt of p, where Fm = {f (n+1)}. We construct a
program p′ ∈ P which results from p by adding the modules m1 and m2, defined
below. Then, (m1, m2, r

′) is an smodtt of p′, where r′ is also defined below.
Let f ′ ∈ (F − Fp)

(1), sub ∈ (F − Fp)
(n+1) with f ′ 6= sub, and pairwise distinct

π1, . . . , πn ∈ (C − Cp)
(0).

1. For every c ∈ C
(k)
p and every equation f (c x1 · · ·xk) y1 · · · yn = rhsp,f,c in

m, the module m1 contains f ′ (c x1 · · ·xk) = dec(rhsp,f,c).

2. m2 is the sub-module induced by Cp and π1, . . . , πn.

3. r′ = dec(r),

where

dec : RHS ({f}, Cp, X, Yn) −→ RHS ({f ′}, Cp ∪ {π1, . . . , πn} ∪ {sub}, X, Y0)

dec(f xi r1 · · · rn) = sub (f ′ xi) dec(r1) · · · dec(rn) ,
for all xi ∈ X, r1, . . . , rn ∈ RHS ({f}, Cp, X, Yn)

dec(c r1 · · · ra) = c dec(r1) · · · dec(ra) ,

for all c ∈ C
(a)
p , r1, . . . , ra ∈ RHS ({f}, Cp, X, Yn)

dec(yj) = πj , for all j ∈ [n].

Since Cp′ = Cp ∪ {π1, . . . , πn}, the module m1 must contain dummy equations
that define f ′ for the new constructors π1, . . . , πn. We choose f ′ πj = πj for
every j ∈ [n]. Similar dummy equations must also be added to all modules in p
when taking them over to p′. 3

Example 3.3 (decomposition for the introductory example)
Consider the program pacc from the introduction and its module macc,lev as identified
in Example 2.3. Let racc = (lev x1 0 [ ]). Decomposition transforms the ncd 1-mtt
(macc,lev , racc) of pacc into the ncd smodtt (mdec,lev ′, mdec,sub , rdec) of pdec as given in
Example 2.8. 3

The following lemma is proved in Appendix D using the principle of simultaneous
induction (cf., e.g., [EV85, FV98, Voi04a]) and Lemma 3.1.

Lemma 3.4 (semantic correctness of the decomposition)
For p, (m, r), p′, and (m1, m2, r

′) as in Transformation 3.2, for every t ∈ TCp
:

nfp(r[x1 � − t]) = nfp′(r′[x1 � − t]).

Moreover, if (m, r) is ncd, then so is (m1, m2, r
′). �
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3.1 Basic Deaccumulation

However, we have not yet reached our goal to improve the verifiability of programs.

Example 3.5 (initial values are still problematic for verification)
Let (mdec,lev ′ , mdec,sub , rdec) be the smodtt of pdec from Example 2.8 which was created
by decomposition in Example 3.3. We resume the first proof attempt from the intro-
duction. Since the initial call has changed from (lev x1 0 [ ]) to (sub (lev ′ x1) 0 [ ]),
we have to prove

sub (lev ′ x1) 0 [ ] = lev2 x1

by induction. Again, the automatic proof fails, because in the induction step (x1 7→
(S x1)) the induction hypothesis cannot be successfully applied to prove the equality
of (sub (lev ′ (S x1)) 0 [ ]) and (lev 2 (S x1)). The problem is that the context
arguments of (sub (lev ′ x1) (S (S π1)) (π1 : π2)), which originates as subterm from

rule application to (sub (lev ′ (S x1)) 0 [ ]), do not fit to the context arguments of
the term (sub (lev ′ x1) 0 [ ]) in the induction hypothesis. 3

3.1.2 Basic Constructor Replacement

We solve the problem observed above by avoiding applications of substitution func-
tions (with specific context arguments like 0 and [ ] in Example 3.5) in initial calls.
Then the initial call always has the form f ′ x1 for a unary function f ′. Hence, in-
duction hypotheses can be applied without paying attention to context arguments.
The idea, illustrated on Example 3.5, is to replace the substitution constructors π1

and π2 by 0 and [ ] from the initial call. Thus, the initial values of sub’s context
arguments are encoded into the equations of the program and the substitution in
the initial call becomes superfluous.

We restrict ourselves to 1-mtts that are ncd. Then, after decomposition the initial
calls have the form (sub (f ′ x1) c1 . . . cn), where c1, . . . , cn are nullary and pairwise
distinct. Thus, when replacing each πj by cj, there is a unique correspondence
between the c1, . . . , cn and the substitution constructors π1, . . . , πn. (In the next
section we will deal with the case of identical c1, . . . , cn.) After replacing each πj

by cj, the constructors c1, . . . , cn show two different faces: If a cj occurs within a
first argument of sub, then it acts like the former substitution constructor πj, i.e.,
it will be substituted by the j-th context argument of sub. Thus, sub now has the
defining equation sub cj y1 · · · yn = yj. Only occurrences of a cj outside of sub’s
first argument are left unchanged, i.e., there the constructor cj is interpreted as its
original value. To make sure that there is no confusion between these two roles of cj,
we again use the ncd-condition. It ensures that before the constructor replacement,
cj did not occur in right-hand sides of f ′’s definition. Hence, the only occurrence of
cj which does not stand for the substitution constructor πj is as context argument
of sub in the initial call, where it is harmless. Actually, this whole substitution in
the initial call can be omitted, because the call (sub (f ′ x1) c1 . . . cn) would now just
mean to replace every cj in (f ′ x1) by cj (cf. also Lemma 2.6(1)). Simplifying the
initial call accordingly makes the resulting smodtt initial value free (ivf). In the next
section we will extend the basic idea in order to allow the (identical) constructors
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Section 3 Deaccumulation

c1, . . . , cn to occur also in the right-hand sides of the original 1-mtt. But first we
present the formalization for the simpler case discussed above.

Transformation 3.6 (basic constructor replacement)
Let p′ ∈ P and (m1, m2, r

′) be an smodtt of p′ as constructed in Transforma-
tion 3.2. Moreover, let (m1, m2, r

′) be ncd, i.e., r′ = (sub (f ′ x1) c1 · · · cn) with

pairwise distinct c1, . . . , cn ∈ C
(0)
p′ −{π1, . . . , πn} that do not occur in right-hand

sides of the definition of f ′ in m1. We construct a program p′′ ∈ P which results
from p′ by replacing m1 and m2 by the modules m′

1 and m′
2, defined below.

Then, (m′
1, m

′
2, r

′′) is an smodtt of p′′ that is ivf, where r′′ is also defined below.

1. For every c ∈ (Cp′ − {π1, . . . , πn})
(k) and every equation f ′ (c x1 · · ·xk) =

rhsp′,f ′,c in m1, the module m′
1 contains f ′ (c x1 · · ·xk) = rhsp′,f ′,c[πj � −

cj | j ∈ [n]].

2. m′
2 is the sub-module induced by Cp′ − {π1, . . . , πn, c1, . . . , cn} and

c1, . . . , cn.

3. r′′ = (f ′ x1).

The dummy equations for the π1, . . . , πn included in the other modules of p′ can
now be dropped, so that Cp′′ = Cp′ − {π1, . . . , πn}. 3

Example 3.7 (constructor replacement for the introductory example)
Let (mdec,lev ′ , mdec,sub , rdec) be the ncd smodtt of pdec from Example 2.8 which was
created by decomposition in Example 3.3. Basic constructor replacement transforms
it into the ivf smodtt (mnon ,lev ′, mnon ,sub , rnon) of pnon as identified in Example 2.8.
This resulting smodtt is exactly the program version for which the introduction
demonstrated that automatic verification is easily possible. 3

The following lemma is proved in Appendix D using the principle of simultaneous
induction, all three statements of Lemma 2.1, and Lemma 2.5.

Lemma 3.8 (semantic correctness of basic constructor replacement)
For p′, (m1, m2, r

′), p′′, and (m′
1, m

′
2, r

′′) as in Transformation 3.6, for every t ∈ TCp′′
:

nfp′(r′[x1 � − t]) = nfp′′(r′′[x1 � − t]). �

By combining Lemmas 3.4 and 3.8, we easily get the following theorem about the
compound transformation.
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3.2 Advanced Deaccumulation

Theorem 3.9 (semantic correctness of basic deaccumulation)
Let p ∈ P and (m, r) be a 1-mtt of p that is ncd. Let p′ and (m1, m2, r

′) be the
program and the smodtt constructed from p and (m, r) by Transformation 3.2.
The smodtt is ncd. Further, let p′′ and (m′

1, m
′
2, r

′′) be the program and the
ivf smodtt constructed from p′ and (m1, m2, r

′) by Transformation 3.6. For
every t ∈ TCp

:
nfp(r[x1 � − t]) = nfp′′(r′′[x1 � − t]). �

Hence, for every 1-mtt that is ncd we can construct a semantically equivalent smodtt
that uses no initial values and no accumulators. Thus, the resulting smodtt is well
suited for verification.

3.2 Advanced Deaccumulation

The results of Section 3.1 were already given in the preliminary version of this
paper [GKV03]. However, in Appendix D we also present the full correctness proofs,
which were omitted from [GKV03].

Here we improve upon these results and develop an extension for 1-mtts violating
the condition ncd. Thus, we now permit initial calls (f x1 c1 · · · cn) where the nullary
constructors c1, . . . , cn do no longer have to be pairwise distinct and where they
may also occur in right-hand sides of f ’s definition. To ease the presentation, in the
following we restrict ourselves to the case where c1 = · · · = cn.

To demonstrate the problems with deaccumulation for such functions, but also to
motivate our approach to overcome these problems, we first consider two examples.

Example 3.10 (identical constructors in the initial call)
Assume that the original 1-mtt, intended to compute the sum of the first x1 natural
numbers, consists of the module

msnat ,sum : sum (S x1) y1 y2 = sum x1 (S y1) (y1 + y2)
sum 0 y1 y2 = y2

and the initial call rsnat = (sum x1 0 0), where “snat” stands for “sum of natural
numbers”. Due to the similarity in structure to the introductory example, analogous
verification problems occur when trying to reason inductively about this specifica-
tion. Attempting to improve the provability, we would first perform the decomposi-
tion transformation, which delivers an smodtt consisting of the function definitions

sum ′ (S x1) = sub (sum ′ x1) (S π1) (π1 + π2)
sum ′ 0 = π2

sub (x1 + x2) y1 y2 = (sub x1 y1 y2) + (sub x2 y1 y2) sub π1 y1 y2 = y1

sub (S x1) y1 y2 = S (sub x1 y1 y2) sub π2 y1 y2 = y2

sub 0 y1 y2 = 0
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Section 3 Deaccumulation

and the initial call (sub (sum ′ x1) 0 0). The symbol + is treated as an ordinary
binary constructor here. This is safe because clearly, if one can verify a conjecture
by treating + as a constructor (i.e., by using no information about it), then the
conjecture also holds if + is a function defined by some equations elsewhere.

Note that still the same constructor 0 is the initial value for both context ar-
guments. Now we perform a näıve replacement of the substitution constructors π1

and π2 by the corresponding values 0 and 0 from the initial call. In addition to
the already existing equation sub 0 y1 y2 = 0, this leads to two more (different)
equations with this left-hand side:

sub 0 y1 y2 = y1

sub 0 y1 y2 = y2

(A closer analysis might have removed the equation sub 0 y1 y2 = 0, since it would
never be applied in the above program with sum ′ and sub. But even then, the
program would remain ambiguous.) This kind of nondeterminism clearly conflicts
with our aim of a semantics-preserving transformation of programs.

The idea for overcoming this problem is based on an analysis of the decomposed
program. Note that, outside its definition, the sub-function is only used with a call
to sum ′ as first argument. Hence, the substitution only has to work properly for the
results computed by sum ′ (i.e., for the “output trees” of sum ′). Figure 1 shows (the
first elements in) the sequence of these output trees for the above example, with
increasing height. There, π1 occurs only in left subtrees of a +-symbol, whereas π2

never occurs in such positions. This information about the contexts in which the
different substitution constructors π1 and π2 may occur can be used as a guide for
performing the necessary substitution task, even after the difference between π1 and
π2 has been blurred by replacing both by 0.

π2
,

+

π1 π2

,

+

S

π1

+

π1 π2

,

+

S

S

π1

+

S

π1

+

π1 π2

, · · ·

Figure 1: sum ′ 0, sum ′ (S 0), sum ′ (S (S 0)), sum ′ (S (S (S 0))), . . .

To employ the “context information”, we define two different “substitution-like”
functions. The function sub1 corresponds to positions in left subtrees of a +-symbol
and therefore, it interprets the symbol 0 like the substitution constructor π1. Anal-
ogously, sub2 corresponds to the other positions and interprets the symbol 0 like the
substitution constructor π2. Thus, we replace the above definitions of sum ′ and sub
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by the following (partial) ones:

sum ′ (S x1) = sub2 (sum ′ x1) (S 0) (0 + 0)
sum ′ 0 = 0

sub2 (x1 + x2) y1 y2 = (sub1 x1 y1 y2) + (sub2 x2 y1 y2) sub1 0 y1 y2 = y1

sub1 (S x1) y1 y2 = S (sub1 x1 y1 y2) sub2 0 y1 y2 = y2

and the initial call is replaced by (sub2 (sum ′ x1) 0 0). If t is a tree as in Figure 1,
but where π1 and π2 are replaced by 0, then starting with sub2 at the root of t
will lead to the same substitutions at leaf nodes as would have been performed by
sub. Therefore, evaluation of (sub2 (sum ′ x1) 0 0) with sum ′ as above will yield the
same result as evaluation of (sub (sum ′ x1) 0 0) with the former definition of sum ′,
for every instantiation of x1. Moreover, (sub2 (sum ′ x1) 0 0) can be simplified to
(sum ′ x1) because a call to sub2 substitutes every 0 in its recursion argument by
either its first or its second context argument, which leads to an identity operation
if both context arguments are themselves initialized with 0. Thus, finally, we have
a program that is semantically equivalent to the original one but uses no initial
values. It solves the verification problems for the original sum-function in the same
way as demonstrated for pacc and racc vs. pnon and rnon in the introduction (cf.
Appendix C). 3

The previous example still relies on the fact that the nullary constructor 0 from the
initial call does not occur in the right-hand sides of defining equations for sum, and
hence also not in the output of sum ′ after decomposition. This would no longer
be the case if, for example, we wanted to express the incrementation of y1 with an
explicit addition rather than an application of the successor symbol, that is, if we
were to replace the first equation of msnat ,sum with the following one:

sum (S x1) y1 y2 = sum x1 (y1 + (S 0)) (y1 + y2).

To discuss our strategy for such a situation, we first consider a simpler example in
the following. Nevertheless, this example is considerably more interesting in terms
of the obtained substitution-like functions. However, we will return to the above
variation of msnat ,sum in Example 3.21.

Example 3.11 (initial value occurring in original right-hand sides)
Consider the 1-mtt consisting of the module

mstring ,f : f (A x1) y1 = f x1 (A (A y1))
f (B x1) y1 = f x1 (A E)
f E y1 = y1

and the initial call (f x1 E). If one regards trees as strings, then f computes the
function with f ((A|B)∗ B An E) y1 = A2·n+1 E and f (An E) y1 = A2·n y1.
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Decomposition results in an smodtt consisting of the function definitions

f ′ (A x1) = sub (f ′ x1) (A (A π1))
f ′ (B x1) = sub (f ′ x1) (A E)
f ′ E = π1

sub (A x1) y1 = A (sub x1 y1) sub E y1 = E
sub (B x1) y1 = B (sub x1 y1) sub π1 y1 = y1

and the initial call (sub (f ′ x1) E). Näıve replacement of π1 by the corresponding
value E from the initial call would lead to the sub-equation

sub E y1 = y1.

This time the original equation sub E y1 = E with the same left-hand side cannot
be dropped since E may occur in the output of the function f ′ above. Again, the
problem is tackled by analyzing the output trees of f ′, as shown in Figure 2. We
obtain f ′ ((A|B)∗ B An E) = A2·n+1 E and f ′ (An E) = A2·n π1. Thus, the output
always consists of a (possibly empty) string of A-symbols followed by either E or
π1, depending on whether the number of A-symbols is odd or even.

π1
,

A

A

π1

,
A

E

,

A

A

A

A

π1

,

A

A

A

E

,
A

E

,
A

E

,

A

A

A

A

A

A

π1

,

A

A

A

A

A

E

,

A

A

A

E

,

A

A

A

E

Figure 2: f ′ E, f ′ (A E), f ′ (B E), f ′ (A (A E)), f ′ (B (A E)), f ′ (A (B E)),
f ′ (B (B E)), f ′ (A (A (A E))), f ′ (B (A (A E))), f ′ (A (B (A E))), f ′ (B (B (A E)))

After replacing π1 by E, this information can be employed by using two substitu-
tion-like functions that “count” the number of A-symbols. The function sub1 cor-
responds to positions below an even number of A-symbols and sub0 corresponds to
positions below an odd number of A-symbols. Thus, depending on sub0 or sub1, an
E found at the end is to be interpreted as an actual E or as a π1. More precisely,
we replace the above definitions of f ′ and sub by the following (partial) ones:

f ′ (A x1) = sub1 (f ′ x1) (A (A E))
f ′ (B x1) = sub1 (f ′ x1) (A E)
f ′ E = E

sub0 (A x1) y1 = A (sub1 x1 y1) sub0 E y1 = E
sub1 (A x1) y1 = A (sub0 x1 y1) sub1 E y1 = y1
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and the initial call is replaced by (sub1 (f ′ x1) E). Obviously, the latter can be
simplified to (f ′ x1). The reason is that all E-symbols in the recursion argument
of sub1 are either left unchanged or are substituted by the context argument of
sub1. The latter leads to the identity operation if that context argument is itself
initialized with E. Thus, we again have obtained a program that is semantically
equivalent to the original one but uses no initial values. This example demonstrates
that substitution-like functions can not only distinguish between different argument
positions of some symbol (as in Example 3.10), but they can also distinguish between
positions according to the number of symbols occurring above them. 3

In the previous two examples, the definitions of the substitution-like functions used
to overcome the limitations of basic constructor replacement were obtained by an
ad-hoc analysis of the program after decomposition. Moreover, we did not formally
prove that they serve their purpose for every input tree. In order to turn the above
ideas into an automatic, semantics-preserving program transformation, we should
of course follow a more systematic approach and also provide a correctness proof.

As a first step, it seems reasonable to specify what exactly we mean by substitu-
tion-like functions. Intuitively, we want a group of mutually recursive functions
that reproduce the shape of an input tree provided as recursion argument, leave the
(non-nullary) labels of internal nodes unchanged, and at leaf nodes decide to either
also leave the label unchanged or to replace the leaf with some context argument
carried through unchanged from the root. That is, we want exactly the kind of
functions that are allowed in the second module of an nmodtt (cf. Definition 2.7).
But how many of them do we need? If the function defined in the original 1-mtt has
n context parameters, then the smodtt obtained after decomposition uses n substi-
tution constructors. To distinguish them even after each of them has been replaced
by the same nullary constructor from the initial call, at least n “incarnations” of
sub should be used, as in Example 3.10. If additionally we want to handle the case
that the initial value may also occur in right-hand sides of the original 1-mtt, as in
Example 3.11, we need a further sub0-function that leaves the nullary constructor
in question unchanged. While in principle one could use arbitrarily many mutu-
ally recursive substitution-like functions, we restrict ourselves to the n+1 functions
motivated above. This also reduces the search space when trying to find suitable
substitution-like functions. Having fixed the number of substitution-like functions
and their roles regarding the treatment of the nullary constructor acting as initial
value, it remains to specify the ways in which they call each other when applied
to non-nullary constructors in the recursion argument. The degrees of freedom we
have in doing so can be captured as in the following definition.

Definition 3.12 (candidate and induced sub-like module)
Let p ∈ P and n ∈

�
. A candidate for p of rank n + 1 is a mapping

K : {(u, c, i) | u ∈ [0, n], c ∈ C(k)
p , i ∈ [k]} −→ [0, n].

For every π0 ∈ C
(0)
p , the sub-like module induced by K and π0 consists of definitions

for pairwise distinct functions sub0, . . . , subn ∈ (F − Fp)
(n+1), where for every u ∈
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[0, n] the following equations are included:

subu π0 y1 · · · yn =

{

π0 if u = 0
yu otherwise

subu (c x1 · · ·xk) y1 · · · yn = c (subK(u,c,1) x1 y1 · · · yn) · · · (subK(u,c,k) xk y1 · · · yn) ,
for all c ∈ (Cp − {π0})

(k). 3

Example 3.13 (representing a candidate for Example 3.10)
Let p be a program with Cp = {+(2), S(1), 0(0)}. The following table specifies a
candidate K for p of rank 3, where the value of K(u, c, i) is found in column u of
row (c, i):

K 0 1 2

(+, 1) 0 2 1
(+, 2) 0 1 2
(S, 1) 0 1 1

The sub-like module induced by K and π0 = 0 contains, among others, the defining
equations for sub1 and sub2 given in Example 3.10. In particular, the boldface entries
in the above table correspond to the equations for recursion arguments built with
+ and S in Example 3.10. The non-boldface entries correspond to the following
equations:

sub0 (x1 + x2) y1 y2 = (sub0 x1 y1 y2) + (sub0 x2 y1 y2)
sub0 (S x1) y1 y2 = S (sub0 x1 y1 y2)
sub1 (x1 + x2) y1 y2 = (sub2 x1 y1 y2) + (sub1 x2 y1 y2)
sub2 (S x1) y1 y2 = S (sub1 x1 y1 y2)

Moreover, by definition we have

sub0 0 y1 y2 = 0. 3

Note that for a given program there are only finitely many candidates of a given
rank. Hence, we can systematically check all candidates K to find one that induces
an appropriate replacement for the sub-module in the decomposed smodtt, in the
sense that this new sub-like module can take over the work of the actual substitution
function even after all occurrences of π1, . . . , πn in the definition of the function f ′

from the decomposed smodtt have been replaced by the nullary constructor acting
as initial value, called π0. For a given candidate, this means to determine whether
one of the functions in the induced sub-like module, say subu, has the property
that whenever it is applied to an output tree computed by the function f ′ from
the decomposed smodtt, positions labeled with πv can only be reached by the subv-
function, for every v ∈ [0, n]. This is both a sufficient and necessary condition to
ensure that after replacing π1, . . . , πn by π0 in the definition of f ′, subu performs the
same substitutions which were previously done by sub.
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Example 3.14 (checking a candidate for an actual output tree of sum � )
Consider the third output tree in Figure 1 of sum ′ from the decomposed smodtt in
Example 3.10. Further, consider the sub-like module induced by the candidate K in
Example 3.13. Figure 3 shows the actions of sub0, sub1, and sub2, respectively, on
the output tree in question. For readability, the context arguments carried through
unchanged from the root are not depicted.
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+
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Figure 3: Actions of sub0, sub1, and sub2 on sum ′ (S (S 0)).

As one can see, neither sub0 nor sub1 would be an appropriate choice for subu,
because they violate the requirement that π1 is only reached by sub1 and that π2 is
only reached by sub2. The function sub2, on the other hand, might be an appropriate
choice to use as replacement for sub. But to be sure, we would have to perform the
above check for every output tree of sum ′, not just for a single one. 3

Checking the behavior of a sub-like module for all (potentially infinitely many)
output trees seems to be a hopeless endeavor at first. However, there are only
finitely many possible outcomes of the analysis for any tree: for each subu and
each πv one has to determine the subset of those sub0, . . . , subn that can reach πv

if computation at the root is started with subu. Thus, we obtain (2n+1)(n+1)·(n+1)

possible outcomes of the analysis. In order to effectively compute the finitely many
outcomes for the infinitely many inputs to f ′, we abstract from each output tree
computed by f ′ to the corresponding outcome of the analysis.
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In order to base our analysis directly on the original 1-mtt with the function
f rather than on the decomposed smodtt with the function f ′, we use the state-
ment (∗) from the proof of Lemma 3.4 that for every t ∈ TCp

, (f ′ t) computes the
same output as (f t π1 · · ·πn). In addition, we use that the π1, . . . , πn are different
from π0 and that none of them is ever produced by f itself. Therefore, instead of
analyzing which of the sub0, . . . , subn reach a πv (with v ∈ [0, n]) when evaluating
(subu (f t π1 · · ·πn) · · ·), one can equivalently analyze which of them reach π0 or
yv (with v ∈ [n]) when evaluating (subu (f t y1 · · · yn) · · ·). This refines our task
to determining the set of all “reachability functions” G : [0, n]× [0, n] −→ P([0, n]).
Here, a function G is a reachability function if there is a t ∈ TCp

such that G(u, v)
describes those subu′ which reach yv when evaluating (subu (f t y1 · · · yn) · · ·). More
precisely, for every u ∈ [0, n] we must have:

− for v ∈ [n], G(u, v) contains exactly those u′ ∈ [0, n] where the v-th context
argument yv is reached by subu′ when evaluating (subu (f t y1 · · · yn) · · ·), and

− G(u, 0) contains exactly those u′ ∈ [0, n] where π0 is reached by subu′ when
evaluating (subu (f t y1 · · · yn) · · ·).

The idea now is to compute the set of all these reachability functions G for trees
of increasing height. Let Gh denote the set of all reachability functions G for trees
of height ≤ h. Clearly, we have G0 = � . In order to compute Gh+1, note that the
output produced by evaluating (f t y1 · · · yn) with height(t) = h + 1 is determined
by evaluating an instance of rhsp,f,c, where c is the root symbol of t. Further note
that in every recursive call of f in rhsp,f,c, f ’s first argument will be instantiated by
some tree of height ≤ h. So to compute Gh+1, we perform the above “reachability
analysis” on all right-hand sides rhsp,f,c and for recursive calls in an rhsp,f,c, we draw
on information from Gh. More precisely, if c has rank k, we consider every choice
of functions G1, . . . , Gk from Gh to provide reachability information for calls of the
form (f x1 · · ·), . . . , (f xk · · ·).

Formally, we use a function rchG1,...,Gk
. Given a right-hand side r̄ and a pair of

values u, v ∈ [0, n], it describes those functions among sub0, . . . , subn which reach yv

(if v 6= 0) resp. π0 (if v = 0) when evaluating an instance of (subu r̄ · · ·). In this
instance, the variables x1, . . . , xk in f ’s recursion arguments may only be instantiated
by trees whose corresponding reachability functions are G1, . . . , Gk, respectively.
Thus, for every recursive call (f xi · · ·) in r̄, we assume that Gi describes the
result of the reachability analysis for xi. Then Gh+1 can be computed by collecting

rchG1,...,Gk
(rhsp,f,c) for all c ∈ C

(k)
p and all choices for G1, . . . , Gk ∈ Gh. The definition

of rchG1,...,Gk
(r̄)(u, v) (formalized in Definition 3.15 below) is by induction on the

structure of r̄. We start with the base cases.
If r̄ = π0, then in instances of (subu π0 · · ·), π0 can only be reached by subu itself

and hence, rchG1,...,Gk
(π0)(u, 0) = {u}. Moreover, none of the context arguments

y1, . . . , yn of f can be reached by any subu′ and hence, rchG1,...,Gk
(π0)(u, v) = � for

every v ∈ [n].
If r̄ = yj ∈ Yn, then in instances of (subu yj · · ·), yj can only be reached by

subu itself, while neither π0 nor any of the y1, . . . , yn other than yj can be reached
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with any subu′. (Note that only variables in f ’s recursion arguments may be in-
stantiated, so yj stays unchanged.) So we obtain rchG1,...,Gk

(yj)(u, j) = {u} and
rchG1,...,Gk

(yj)(u, v) = � for every v ∈ [0, n] − {j}.

In the first recursive case, let r̄ = (c r1 · · · ra) for a constructor c ∈ C
(a)
p other

than π0. As mentioned, rchG1,...,Gk
(c r1 · · · ra)(u, v) should describe those functions

among sub0, . . . , subn which reach yv (or π0, if v = 0) when evaluating an instance
of (subu (c r1 · · · ra) · · ·). Due to the definition of the sub-like module induced by
K, the first evaluation step yields (a corresponding instance of)

c (subK(u,c,1) r1 · · ·) · · · (subK(u,c,a) ra · · ·).

Thus, by simply collecting the results of the reachability analysis for r1, . . . , ra,
rchG1,...,Gk

(c r1 · · · ra)(u, v) is defined as

rchG1,...,Gk
(r1)(K(u, c, 1), v) ∪ · · · ∪ rchG1,...,Gk

(ra)(K(u, c, a), v).

In the other recursive case, we have r̄ = (f xi r1 · · · rn). Our goal is to de-
scribe those functions among sub0, . . . , subn which reach yv (or π0, if v = 0) when
evaluating an instance of (subu (f xi r1 · · · rn) · · ·), assuming that xi is instanti-
ated by a tree t′ whose reachability function is Gi. To properly collect, in a similar
way as in the previous case, the reachability information recursively determined for
r1, . . . , rn, we first need to know which of the sub0, . . . , subn will reach each rl when
evaluating (subu (f t′ r1 · · · rn) · · ·). This, of course, depends on the tree t′ that xi

is instantiated with. However, we do not need to know that actual tree. Rather,
the function Gi corresponding to xi, as carried along by rchG1,...,Gk

, provides all
necessary information. If, for example, that function Gi maps (u, 1) to a set con-
taining u1, then we know that subu1 reaches r1, and hence (among others) we have
to include rchG1,...,Gk

(r1)(u1, v). In a similar way, we have to proceed for r2, . . . , rn.
So rchG1,...,Gk

(f xi r1 · · · rn)(u, v) must include the union of all rchG1,...,Gk
(rl)(ul, v)

with l ∈ [n] and ul ∈ Gi(u, l). Further elements are only needed in the case v = 0,
when we have to determine all functions among sub0, . . . , subn which can reach π0

while evaluating (subu (f t′ r1 · · · rn) · · ·). In addition to those π0 which are con-
tributed by the context arguments r1, . . . , rn, we then also need to account for those
occurrences of π0 that would already be produced by the call (f t′ y1 · · · yn). The
necessary reachability information is again simply drawn from the function Gi.

Note that the indexing of the rch-function with G1, . . . , Gk ensures that several
recursive calls of f with the same recursion argument xi in the same right-hand side
always use the same Gi.

Definition 3.15 (successful candidate)
Let p ∈ P and (m, f x1 π0 · · ·π0) be a 1-mtt of p, where Fm = {f (n+1)} and

π0 ∈ C
(0)
p . Let K be a candidate for p of rank n + 1. For every h ∈

�
we define
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a set Gh of functions of type [0, n] × [0, n] −→ P([0, n]) as follows:

G0 = �
Gh+1 =

⋃

c∈C
(k)
p

{rchG1,...,Gk
(rhsp,f,c) | G1, . . . , Gk ∈ Gh} ,

where for every k ∈
�
, r̄ ∈ RHS ({f}, Cp, Xk, Yn), and functions G1, . . . , Gk of the

above type, the function rchG1,...,Gk
(r̄) of that type is obtained by case analysis

on r̄. With yj ∈ Yn, c ∈ (Cp − {π0})
(a), xi ∈ Xk, and rl ∈ RHS ({f}, Cp, Xk, Yn)

for l ∈
�
, it maps arguments u, v ∈ [0, n] to a result in P([0, n]) as follows:

rchG1,...,Gk
(π0)(u, v) =

{

{u} if v = 0
� otherwise

rchG1,...,Gk
(yj)(u, v) =

{

{u} if v = j
� otherwise

rchG1,...,Gk
(c r1 · · · ra)(u, v) =

⋃

l∈[a]

rchG1,...,Gk
(rl)(K(u, c, l), v)

rchG1,...,Gk
(f xi r1 · · · rn)(u, v) =

(

⋃

l∈[n]

⋃

u′∈Gi(u,l)

rchG1,...,Gk
(rl)(u

′, v)
)

∪

{

Gi(u, 0) if v = 0
� otherwise.

For some u ∈ [0, n] we say that the candidate K is successful for
(m, f x1 π0 · · ·π0) with subu if for every G ∈

⋃

h∈
�
Gh and v ∈ [0, n]:

G(u, v) ⊆ {v}. 3

Note that each (except the first) set in the sequence � ,G1,G2, . . . is computed in
exactly the same way only from the previous one. This means that if some Gh

and Gh+1 are equal, then every further set in the sequence is also equal to them.
Moreover, it is easy to see that � ⊆ G1 ⊆ G2 ⊆ · · · because the operation computing
Gh+1 from Gh preserves set inclusion. Since there are only finitely many functions of
type [0, n]× [0, n] −→ P([0, n]), this implies that the fixpoint Gh = Gh+1 is definitely
reached. Then, we have actually computed the infinite union

⋃

h∈
�
Gh in finitely many

iterations. Hence, the success or failure of a candidate can be decided effectively.

Example 3.16 (establishing success of the candidate from Example 3.13)
Let psnat be a program with Cpsnat

= {+(2), S(1), 0(0)} and let K be the candidate from
Example 3.13. Assume that psnat contains the module msnat ,sum from Example 3.10.
For completeness, msnat ,sum is extended by an equation which handles the case when
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sum is applied to a +-term, e.g.

sum (x1 + x2) y1 y2 = y2.

Then, (msnat ,sum , rsnat) with rsnat = (sum x1 0 0) is a 1-mtt of psnat .
We have π0 = 0. Since G0 = � , we obtain

G1 =
⋃

c∈C
(0)
psnat

{rch(rhspsnat ,sum ,c)} = {rch (y2)}.

Using a representation of functions of type {0, 1, 2} × {0, 1, 2} −→ P({0, 1, 2}) by
tables, similar to Example 3.13, we get

G1 =















0 1 2

0 rch (y2)(0, 0) rch(y2)(1, 0) rch (y2)(2, 0)
1 rch (y2)(0, 1) rch(y2)(1, 1) rch (y2)(2, 1)
2 rch (y2)(0, 2) rch(y2)(1, 2) rch (y2)(2, 2)















=















0 1 2

0 � � �
1 � � �
2 {0} {1} {2}















.

The fact that the single function G in G1 returns {0} for the input (0, 2) means that
sub0 is the only function which can reach y2 when evaluating the term (sub0 y2 · · ·).

In the next iteration, we have

G2 = {rch(rhspsnat ,sum,0)}

∪ {rchG1
(rhspsnat ,sum ,S) | G1 ∈ G1}

∪ {rchG1,G2
(rhspsnat ,sum ,+) | G1, G2 ∈ G1}

= G1 ∪ {rchG(sum x1 (S y1) (y1 + y2)), rchG,G(y2)}.

It is easy to see that rchG,G(y2) = G. So it remains to calculate rchG(sum x1 (S y1) (y1+
y2)). We only show the calculation of a single entry in the table representing that
function:

rchG(sum x1 (S y1) (y1 + y2))(2, 1) =
⋃

u′∈G(2,1)

rchG(S y1)(u
′, 1)

∪
⋃

u′∈G(2,2)

rchG(y1 + y2)(u
′, 1)

= � ∪ rchG(y1 + y2)(2, 1)
= rchG(y1)(K(2, +, 1), 1)

∪ rchG(y2)(K(2, +, 2), 1)
= {K(2, +, 1)} ∪ � = {1}.

This means that sub1 is the only function which can reach y1 when evaluating
(sub2 (sum x1 (S y1) (y1 + y2)) · · ·) with x1 instantiated by a tree of height ≤ 1.
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Calculating also the other entries leads to the following:

G2 = G1 ∪















0 1 2

0 � � �
1 {0} {2} {1}
2 {0} {1} {2}















.

The next iterations give

G3 = G2 ∪















0 1 2

0 � � �
1 {0} {1, 2} {1}
2 {0} {1} {2}















and G4 = G3. Thus, we have reached a fixpoint. Checking the three functions
produced so far, it is now easy to see that K is successful for (msnat ,sum , rsnat)
with sub2 (but neither with sub0 nor with sub1). The reason is that for every
G ∈ G3 and v ∈ {0, 1, 2} we have G(2, v) ⊆ {v}. 3

In which sense the sub-like module induced by a successful candidate performs the
required substitutions is made precise in the following key lemma. The proof in
Appendix D is the technically most challenging one in this paper. In particular, it
requires a new kind of nondeterministic substitution in trees.

Lemma 3.17 (key to the advanced deaccumulation transformation)
Let p ∈ P , (m, r) be a 1-mtt of p, where r = (f x1 π0 · · ·π0) with Fm = {f (n+1)}

and π0 ∈ C
(0)
p . Further, let K be a candidate for p of rank n + 1 and p′ ∈ P be a

program containing (at least) the module m and the sub-like module induced by K
and π0. For every u ∈ [0, n] such that K is successful for (m, r) with subu, for every
t ∈ TCp

and s1, . . . , sn ∈ TCp∪Fp′
:

nfp′(f t s1 · · · sn) = nfp′(subu (f t π0 · · ·π0) s1 · · · sn). �

The previous lemma carries the essence of the new transformation to be proposed
now, similarly to the role that Lemma 3.1 played for decomposition. Indeed, Trans-
formation 3.18 bears strong resemblance to Transformation 3.2, extending even to
their correctness proofs.

Transformation 3.18 (advanced deaccumulation)
Let p ∈ P and (m, r) be a 1-mtt of p, where r = (f x1 π0 · · ·π0) with Fm =

{f (n+1)} and π0 ∈ C
(0)
p . Let K be a candidate for p of rank n+1, such that K is

successful for (m, r) with some subu ∈ {sub0, . . . , subn}. We construct a program
p′ ∈ P which results from p by adding the modules m1 and m2, defined below.
Then, (m1, m2, r

′) is an ivf nmodtt of p′, where r′ is also defined below. Let
f ′ ∈ (F − Fp)

(1) and sub0, . . . , subn ∈ (F − Fp)
(n+1) such that f ′, sub0, . . . , subn

are pairwise distinct.
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1. For every c ∈ C
(k)
p and every equation f (c x1 · · ·xk) y1 · · · yn = rhsp,f,c in

m, the module m1 contains f ′ (c x1 · · ·xk) = adv(rhsp,f,c), where

adv : RHS ({f}, Cp, Xk, Yn) −→ RHS ({f ′}, Cp ∪ {subu}, Xk, Y0)

adv(f xi r1 · · · rn) = subu (f ′ xi) adv(r1) · · · adv(rn) ,
for all i ∈ [k], r1, . . . , rn ∈ RHS ({f}, Cp, Xk, Yn)

adv(c′ r1 · · · ra) = c′ adv(r1) · · · adv(ra) ,

for all c′ ∈ C
(a)
p , r1, . . . , ra ∈ RHS ({f}, Cp, Xk, Yn)

adv(yj) = π0 , for all j ∈ [n].

2. m2 is the sub-like module induced by K and π0.

3. r′ = (f ′ x1). 3

The following theorem is proved by essentially “recycling” the proof of Lemma 3.4,
except for using Lemma 3.17 instead of Lemma 3.1. For the statements proved in
the simultaneous induction, see Appendix D.

Theorem 3.19 (semantic correctness of advanced deaccumulation)
For p, (m, r), p′, and (m1, m2, r

′) as in Transformation 3.18, for every t ∈ TCp
:

nfp(r[x1 � − t]) = nfp′(r′[x1 � − t]). �

To experiment with advanced deaccumulation, we have implemented the analysis
from Definition 3.15 in Haskell. The implementation generates all candidates and for
each of them it performs the fixpoint computation to decide its success or failure.
The outcome for the input programs discussed at the beginning of Section 3.2 is
reported in the following.

Example 3.20 (advanced deaccumulation for Example 3.10)
Let psnat be a program with Cpsnat

= {+(2), S(1), 0(0)}. Assume that psnat contains
the module msnat ,sum from Example 3.10, for completeness’ sake again extended by
the equation

sum (x1 + x2) y1 y2 = y2.

Among the 33∗3 = 19683 candidates for psnat of rank 3, our implementation finds
exactly 729 successful candidates for the 1-mtt (msnat ,sum , sum x1 0 0) of psnat . Each
of them is successful with (and only with) sub2. Moreover, they all agree on the
boldface entries in the table given in Example 3.13. Indeed, the 729 = 36 successful
candidates arise exactly from all possible choices for the non-boldface entries in
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Section 3 Deaccumulation

that table. Choosing (randomly) the particular candidate K given in Example 3.13,
and performing advanced deaccumulation based on it, the transformed program
contains an ivf nmodtt featuring the final set of equations given in Example 3.10,
the additional equation

sum ′ (x1 + x2) = 0 ,

the equations for sub0, sub1, and sub2 given in Example 3.13, and the initial call
(sum ′ x1). 3

Example 3.21 (advanced deaccumulation for variation of Example 3.10)
Let psnat ′ be a program with Cpsnat′

= {+(2), S(1), 0(0)}, containing the following
module, cf. the discussion after Example 3.10:

msnat ′,sum : sum (S x1) y1 y2 = sum x1 (y1 + (S 0)) (y1 + y2)
sum 0 y1 y2 = y2

sum (x1 + x2) y1 y2 = y2

Among the 33∗3 = 19683 candidates for psnat ′ of rank 3, our implementation finds
exactly 243 successful candidates for the 1-mtt (msnat ′ ,sum , sum x1 0 0) of psnat ′ .
Each of them is successful with (and only with) sub2, and is obtained by arbitrarily
filling the empty positions in one of the following tables with values from {0, 1, 2}:

0 1 2

(+, 1) 1 1
(+, 2) 0 2
(S, 1) 0

,

0 1 2

(+, 1) 1 1
(+, 2) 1 2
(S, 1) 0

, and

0 1 2

(+, 1) 1 1
(+, 2) 2 2
(S, 1) 0

Choosing the successful candidate corresponding to the first table filled up with
0-entries, and performing advanced deaccumulation based on it, the transformed
program contains an ivf nmodtt featuring the following equations:

sum ′ (S x1) = sub2 (sum ′ x1) (0 + (S 0)) (0 + 0)
sum ′ 0 = 0
sum ′ (x1 + x2) = 0

sub2 (x1 + x2) y1 y2 = (sub1 x1 y1 y2) + (sub2 x2 y1 y2) sub0 0 y1 y2 = 0
sub1 (x1 + x2) y1 y2 = (sub1 x1 y1 y2) + (sub0 x2 y1 y2) sub1 0 y1 y2 = y1

sub0 (S x1) y1 y2 = S (sub0 x1 y1 y2) sub2 0 y1 y2 = y2

sub0 (x1 + x2) y1 y2 = (sub0 x1 y1 y2) + (sub0 x2 y1 y2)
sub1 (S x1) y1 y2 = S (sub0 x1 y1 y2)
sub2 (S x1) y1 y2 = S (sub0 x1 y1 y2)

and the initial call (sum ′ x1). 3

Example 3.22 (advanced deaccumulation for Example 3.11)
Let pstring be a program with Cpstring

= {A(1), B(1), E(0)}. Assume that pstring contains
the module mstring ,f from Example 3.11. Among the 22∗2 = 16 candidates for pstring
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of rank 2, our implementation finds exactly the following four successful candidates
for the 1-mtt (mstring ,f , f x1 E) of pstring :

0 1

(A, 1) 1 0
(B, 1) 0 0

,

0 1

(A, 1) 1 0
(B, 1) 0 1

,

0 1

(A, 1) 1 0
(B, 1) 1 0

, and

0 1

(A, 1) 1 0
(B, 1) 1 1

Each of them is successful with (and only with) sub1. Choosing the first successful
candidate and performing advanced deaccumulation based on it, the transformed
program contains an ivf nmodtt featuring the final set of equations given in Exam-
ple 3.11, the equations

sub0 (B x1) y1 = B (sub0 x1 y1)
sub1 (B x1) y1 = B (sub0 x1 y1) ,

and the initial call (f ′ x1). 3

Thus, Transformation 3.18 successfully and systematically performs the deaccumu-
lation tasks that could only be solved with an ad-hoc analysis at the beginning of
Section 3.2. Of course, advanced deaccumulation does not necessarily succeed for
every input function: it fails if the original 1-mtt admits no sub-like module that
can perform the required substitutions after the π0, . . . , πn have been equalized.

Example 3.23 (possible failure of advanced deaccumulation)
Consider a program pfail to compute dx1

2
e, consisting of the following module:

mfail ,div : div (S x1) y1 y2 = div x1 (S y2) y1

div 0 y1 y2 = y1

Among the 33∗1 = 27 candidates for pfail of rank 3, our implementation does not
find a single successful one for the 1-mtt (mfail ,div , div x1 0 0) of pfail . The intu-
itive reason is that the proper placement of context arguments in the output of div
cannot be determined solely from the shape of that output. More precisely, when
called with the substitution constructors π1 and π2 as context arguments, div may
produce the output (S π2), for input (S 0), as well as the output (S π1), for in-
put (S (S 0)). These outputs have identical shape, but differ in the substitution
constructor found at the leaf. Hence, in contrast to Examples 3.10 and 3.11 (and
the variation of Example 3.10 considered in Example 3.21), here it is impossible to
provide substitution-like functions that could properly decide, e.g., whether the leaf
of (S 0) is to be interpreted as an actual 0, as a π1, or as a π2. 3

4 Related Work

Program transformation is a well-established field in software engineering and com-
piler construction (see, e.g., [BW82, BD77, Par90, PP96]). There has also been
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Section 4 Related Work

a considerable amount of work on introducing accumulating arguments (see, e.g.,
[Bir84, Hug86, Wad89, Boi91, HIT99, KGK01, Voi02]). While most of these trans-
formations aim at increasing efficiency, we have explored a novel application area
for program transformations by applying them in order to increase verifiability.
This goal often runs counter to the classical aim of increasing efficiency, since a
more efficient program is usually harder to verify. In particular, while compo-
sition techniques [Fül81, EV85, Küh98, KGK01, Man03, VK04] from the theory
of tree transducers can be applied to improve the efficiency of functional pro-
grams [Küh99, Mal02, Voi04a, Voi05], we have demonstrated that also the cor-
responding decomposition techniques are not only of theoretical interest. Indeed,
“inverting” existing transformation techniques seems to be a useful starting point in
general to find transformations which increase verifiability. However, these inverted
transformations may still have to be refined significantly in order to actually solve
verification problems, as seen in our deaccumulation technique, where decomposition
had to be combined with appropriate constructor replacement techniques.

Program transformations that improve verifiability have rarely been investigated
before. A first step into this direction was taken in [Gie00]. There, two transforma-
tions were presented that can remove accumulators. They are based on associativity
and commutativity properties of auxiliary functions like + occurring in accumulat-
ing arguments. The advantage of the approach in [Gie00] is that it does not require
the strict syntactic restrictions of 1-mtts. In particular, it does not require that
functions from other modules may not be called in right-hand sides. Because of
that restriction, in the present paper, we have to treat all auxiliary functions like +
as constructors and exclude the use of any information about these functions during
the transformation. On the other hand, the technique of [Gie00] can essentially
only remove one accumulating argument (e.g., in contrast to our method, it cannot
eliminate both accumulators of pacc). Moreover, the approach in [Gie00] heavily
relies on knowledge about auxiliary functions like +. Hence, it is not applicable if
the contexts of accumulating arguments on the right-hand sides of equations are not
associative or commutative. Thus, in contrast to our technique, it fails on examples
like the following program pexp :

exp (S x1) y1 = exp x1 (exp x1 y1)
exp 0 y1 = S y1

The initial call is (exp x1 0). We want to prove

exp x1 0 = e x1 ,

where (e (Sn 0)) computes (S2n

0), see below. Here, (Sz1 0) + (Sz2 0) is assumed to
compute (Sz1+z2 0).

e (S x1) = (e x1) + (e x1)
e 0 = S 0

Since exp is a 1-mtt that is ncd, basic deaccumulation delivers the program:

exp′ (S x1) = sub (exp ′ x1) (sub (exp ′ x1) 0) sub (S x1) y1 = S (sub x1 y1)
exp′ 0 = S 0 sub 0 y1 = y1
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and the initial call (exp ′ x1), which are better suited for induction provers because
there are no accumulating arguments anymore. For instance, instead of proving the
above claim for the original program (which would require an ad-hoc generalization),
now the statement

exp ′ x1 = e x1

can be proved automatically. We only show the induction step (x1 7→ (S x1)). Note
that the statements about substitution functions in Lemma 2.6 are often helpful
for the verification of transformed programs (cf. also the examples in Appendices A
and B). These statements require no extra proof effort, since they can be generated
automatically during program transformation. Further generic statements about
substitution functions, depending only on the set of constructors but not on the
accumulative function to be transformed, and how they can reduce verification effort,
were discussed in [Voi05].

exp ′ (S x1)
= sub (exp′ x1) (sub (exp′ x1) 0)
= sub (e x1) (sub (e x1) 0) (2 ∗ IH )
= sub (e x1) (e x1) (Lemma 2.6(1))
= (e x1) + (e x1) (Lemma 2.6(3) and the assumption on +)
= e (S x1)

The above example also demonstrates that, in contrast to [Gie00], our technique can
handle nested recursion. Indeed, deaccumulation is useful for functional programs
in general (cf. also Appendix A, where the original program contains a recursive
call with surrounding context) — not just for tail-recursive functions resulting from
translating imperative programs.

5 Conclusions and Directions for Future Work

Conjectures about imperative programs and accumulative functional programs are
hard to verify with induction theorem provers. The reason is that their proofs
often require sophisticated generalizations which are difficult to find automatically.
Therefore, we have introduced an automatic technique that transforms accumulative
functions (for example, but not only, obtained by translating imperative programs)
into non-accumulative ones, whose verification is usually significantly easier with
existing proof tools.

While in many examples generalizations can be avoided by our technique, it does
not render generalization techniques superfluous. There are accumulative functions
where our transformations are not applicable, and even if they are, there are still
conjectures that can only be proved via a suitable generalization. However, even
then deaccumulation is advantageous because the generalizations for the transformed
functions are usually much easier than the ones required for the original accumulative
functions (cf. Appendix A).
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Section 5 Conclusions and Directions for Future Work

An obvious direction for future work is to develop a transformation that sub-
sumes both our basic and advanced deaccumulation techniques. Currently, basic
deaccumulation requires the nullary constructors acting as initial values to be pair-
wise distinct and not to occur in right-hand sides of the relevant function definition.
In contrast, advanced deaccumulation requires them to be all equal and poses no
restriction on their occurrence in right-hand sides. Instead, one might want to han-
dle the general case that the initial values are arbitrary nullary constructors, where
some (but not necessarily all) of them may be equal, and there is no restriction on
right-hand sides. This is possible with a program analysis very much in the spirit
of Definition 3.15, but complicated by more technicalities. Solely for the sake of
accessibility of the key ideas, we restricted ourselves to the case of initial values
being all equal here.

An interesting topic for future work is to couple the transformations directly
with an induction theorem prover. To this end, we are working on a corresponding
extension of the verification tool AProVE [GTSKF04]. Moreover, also the current
implementation of the presented fixpoint computation in Haskell certainly leaves
room for improvement, even though it already uses some implementation tricks
like integrating the success condition into the iterative computation to allow an
early abort for non-successful candidates. Fortunately, the search space does not
necessarily have to be explored in full. At least for the 1-mtt from Example 3.10 and
its variation, each of the successful candidates reported in Examples 3.20 and 3.21
turns out be equally suitable to automatically solve verification problems similar
to that from the introduction (cf. Appendix C). Hence, the search process can be
stopped once the first successful candidate is found. On the other hand, if there is
not a single successful candidate for some 1-mtt, then a complete exploration is still
necessary to detect this.

To improve the asymptotic complexity of the fixpoint computation, it is possi-
ble to simplify the domain for abstract interpretation (as implicitly used in Defi-
nition 3.15). For example, instead of a set of reachability functions, it would be
possible to maintain only a single “superposed” function throughout the iteration
process, and/or instead of arbitrary subsets of {0, . . . , n}, one could allow only
empty and singleton sets as function values, signaling non-success as soon as a set
with at least two elements is produced. While these approximations might lead to
some successful candidates being overlooked, correctness of those candidates being
recognized as successful would still be guaranteed. And at least for the 1-mtts from
Examples 3.10 and 3.11 (and the mentioned variation of Example 3.10), it turns
out that successful candidates can be found even after the proposed modifications
to the analysis process.

To increase the applicability of our approach, it could be extended to more gen-
eral forms of algorithms. An obvious choice would be to handle mutually recursive
functions, i.e., general mtts rather than 1-mtts only. For basic deaccumulation, such
a generalization was already given in [Sap03], along with an implementation. For
advanced deaccumulation, it also seems to be unproblematic, using different sets
of reachability functions for the different functions in the mtt to be transformed in
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order to assure maximal accuracy in the fixpoint computation.
For simplicity, we have assumed an untyped language throughout. When in-

troducing types, one would have to generate several substitution functions for the
different types of arguments, even in the case of basic deaccumulation. An exten-
sion beyond mtts seems to be possible as well. For example, the requirement of flat
patterns on left-hand sides may be relaxed. Further extensions include transforma-
tions based on a decomposition that only removes those context arguments from a
function that are modified in recursive calls. Finally, it would also be interesting
to see whether it is possible to incorporate the transformations of [Gie00] into our
approach.

Appendix

In the next three appendices, we illustrate the advantages of our contributions with
additional examples. Appendices A and B show that the classical approach of
finding suitable generalizations is extremely hard for conjectures containing several
occurrences of an accumulative function. Here, deaccumulation helps to simplify
the proof tasks substantially. (After the deaccumulation, the proof works without
generalizations in Appendix B and in Appendix A, the required generalization is
now very easy to find.) While Appendices A and B illustrate the use of the basic
deaccumulation technique, Appendix C demonstrates the advantage of the advanced
deaccumulation technique for verification tasks. Finally, Appendix D contains full
proofs.

A Example: Splitting Monadic Trees

The program
split (A x1) y1 = A (split x1 y1)
split (B x1) y1 = split x1 (B y1)
split N y1 = y1

with initial call (split x1 N) maps a monadic tree with n1 and n2 occurrences of the
unary constructors A and B, respectively, to the tree (An1 (Bn2 N)) by accumulating
the B’s in the context argument of split . By basic deaccumulation it is transformed
into the program

split ′ (A x1) = A (sub (split ′ x1) N) sub (A x1) y1 = A (sub x1 y1)
split ′ (B x1) = sub (split ′ x1) (B N) sub (B x1) y1 = B (sub x1 y1)
split ′ N = N sub N y1 = y1

with initial call (split ′ x1). If we want to prove the idempotence of the splitting
operation, then the proof for the original program requires a generalization from

split (split x1 N) N = split x1 N
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Appendix B Example: Reversing Monadic Trees

to
split (split x1 (b x2)) (b x3) = split x1 (b (x2 + x3)) ,

where (b n) computes (Bn N). Such a generalization is difficult to find. On the
other hand,

split ′ (split ′ x1) = split ′ x1

can be proved automatically. In the first step case (x1 7→ (A x1)), Lemma 2.6(1)
is used to infer the equality of (sub (split ′ x1) N) and (split ′ x1). In the second
step case (x1 7→ (B x1)), a straightforward generalization step is required by iden-
tifying two common subexpressions in a proof subgoal. More precisely, by applying
the induction hypothesis, the induction conclusion is transformed into the proof
obligation

split ′ (sub (split ′ x1) (B N)) = sub (split ′ (split ′ x1)) (B N).

Now, the two underlined occurrences of (split ′ x1) are generalized to a fresh variable
x, and then the proof works by induction on x.

B Example: Reversing Monadic Trees

Consider the program
rev (A x1) y1 = rev x1 (A y1)
rev (B x1) y1 = rev x1 (B y1)
rev N y1 = y1

with initial call (rev x1 N). By basic deaccumulation, it is transformed into the
program

rev ′ (A x1) = sub (rev ′ x1) (A N) sub (A x1) y1 = A (sub x1 y1)
rev ′ (B x1) = sub (rev ′ x1) (B N) sub (B x1) y1 = B (sub x1 y1)
rev ′ N = N sub N y1 = y1

with initial call (rev ′ x1). Taking into account that sub is just the concatenation
function on monadic trees, the above programs correspond to the efficient and the
inefficient reverse function, which have linear and quadratic time-complexity in the
size of the input tree, respectively. Thus, this example shows that the aim of our
technique runs counter to the aim of many classical program transformations, i.e.,
the efficiency is decreased, but the suitability for verification is improved: If we
want to show that the reverse of two concatenated lists is the concatenation of the
reversed lists in exchanged order, then the proof of

rev (sub x1 x2) N = sub (rev x2 N) (rev x1 N)

again requires considerable generalization effort, whereas

rev ′ (sub x1 x2) = sub (rev ′ x2) (rev ′ x1)

can be proved by a straightforward induction on x1, exploiting statements 1 and 2
of Lemma 2.6.
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C Example: Summing up Natural Numbers

In Examples 3.10 and 3.20, advanced deaccumulation was used to transform the
program

sum (S x1) y1 y2 = sum x1 (S y1) (y1 + y2)
sum 0 y1 y2 = y2

with initial call (sum x1 0 0) into the program

sum ′ (S x1) = sub2 (sum ′ x1) (S 0) (0 + 0)
sum ′ 0 = 0

sub2 (x1 + x2) y1 y2 = (sub1 x1 y1 y2) + (sub2 x2 y1 y2) sub1 0 y1 y2 = y1

sub1 (S x1) y1 y2 = S (sub1 x1 y1 y2) sub2 0 y1 y2 = y2

with initial call (sum ′ x1), omitting some superfluous equations here. Our goal
is to verify the equivalence of the original program and the following alternative
specification of summing up natural numbers:

sum2 (S x1) = x1 + (sum2 x1)
sum2 0 = 0

The automatic proof of
sum x1 0 0 = sum2 x1

fails in the induction step (x1 7→ (S x1)). For the deaccumulated program, however,
the statement

sum ′ x1 = sum2 x1 ,

can be proved without any problems. We only give the induction step (x1 7→ (S x1)),
omitting the simple base case (x1 = 0). For the left-hand side of the equation, we
obtain

sum ′ (S x1)
= sub2 (sum ′ x1) (S 0) (0 + 0)
= sub2 (sum2 x1) (S 0) (0 + 0) (IH )

and for the right-hand side, we have

sum2 (S x1) = x1 + (sum2 x1).

So to finish the proof, we have to show the conjecture

sub2 (sum2 x1) (S 0) (0 + 0) = x1 + (sum2 x1).

We again use induction, omitting the simple base case. In the step case, for the
left-hand side we obtain

sub2 (sum2 (S x1)) (S 0) (0 + 0)
= sub2 (x1 + (sum2 x1)) (S 0) (0 + 0)
= (sub1 x1 (S 0) (0 + 0)) + (sub2 (sum2 x1) (S 0) (0 + 0))
= (sub1 x1 (S 0) (0 + 0)) + (x1 + (sum2 x1)) (IH )
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and for the right-hand side, we have

(S x1) + (sum2 (S x1)) = (S x1) + (x1 + (sum2 x1)).

Thus, it remains to show the conjecture

sub1 x1 (S 0) (0 + 0) = S x1.

Here, in the step case, we obtain

sub1 (S x1) (S 0) (0 + 0)
= S (sub1 x1 (S 0) (0 + 0))
= S (S x1) (IH ),

which (together with the straightforward base case) proves the conjecture.

D Proofs

First, we prove an auxiliary lemma, which also serves to illustrate the principle of
proof by simultaneous induction (cf., e.g., [EV85, FV98, Voi04a]).

Lemma D.1 (auxiliary, actual vs. formal parameters)
Let p ∈ P and (m, r) be a 1-mtt of p, where Fm = {f (n+1)}. For every t ∈ TCp

and
s1, . . . , sn ∈ TCp∪Fp

(Yn):

nfp(f t s1 · · · sn) = nfp(f t y1 · · ·yn)[yj � − nfp(sj) | j ∈ [n]].

Proof
We prove the following two statements by simultaneous induction, where the first
coincides with the statement of the lemma:

(∗) For every t ∈ TCp
and s1, . . . , sn ∈ TCp∪Fp

(Yn):

nfp(f t s1 · · · sn) = nfp(f t y1 · · ·yn)[yj � − nfp(sj) | j ∈ [n]].

(∗∗) For every k ∈
�
, t1, . . . , tk ∈ TCp

, s1, . . . , sn ∈ TCp∪Fp
(Yn), and r̄ ∈ RHS ({f},

Cp, Xk, Yn):

nfp(r̄[xi, yj � − ti, sj | i ∈ [k], j ∈ [n]])
= nfp(r̄[xi � − ti | i ∈ [k]])[yj � − nfp(sj) | j ∈ [n]].

To prove (∗) for t = (c t1 · · · tk) with c ∈ C
(k)
p and t1, . . . , tk ∈ TCp

under the
assumption that (∗∗) holds for k and t1, . . . , tk, we instantiate r̄ in (∗∗) to rhsp,f,c.
To prove (∗∗) for k ∈

�
and t1, . . . , tk ∈ TCp

under the assumption that (∗) holds
for each of the t1, . . . , tk, we perform an induction on the structure of r̄, for fixed
s1, . . . , sn ∈ TCp∪Fp

(Yn). The cases r̄ ∈ Yn and r̄ = (c r1 · · · ra) for some c ∈ C
(a)
p and

r1, . . . , ra ∈ RHS ({f}, Cp, Xk, Yn) are straightforward. The validity in the remaining
case is proved as follows.
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Case r̄ = (f xi′ r1 · · · rn) for some xi′ ∈ Xk and r1, . . . , rn ∈ RHS ({f}, Cp, Xk, Yn):

nfp((f xi′ r1 · · · rn)[xi, yj � − ti, sj | i ∈ [k], j ∈ [n]])
= (by substitution, (∗) for ti′ , and the induction hypotheses for the r1, . . . , rn)
nfp(f ti′ y1 · · · yn)[yj′ � − nfp(rj′[xi � − ti | i ∈ [k]])[yj � − nfp(sj) | j ∈ [n]]

| j ′ ∈ [n]]
= (by Lemma 2.1(2))
nfp(f ti′ y1 · · · yn)[yj′ � − nfp(rj′[xi � − ti | i ∈ [k]]) | j ′ ∈ [n]]

[yj � − nfp(sj) | j ∈ [n]]
= (by substitution and (∗) for ti′)
nfp((f xi′ r1 · · · rn)[xi � − ti | i ∈ [k]])[yj � − nfp(sj) | j ∈ [n]] �

Proof of Lemma 3.1
The lemma is established by the following calculation:

nfp′(f t s1 · · · sn)
= (by Lemma D.1)
nfp′(f t y1 · · · yn)[yj � − nfp′(sj) | j ∈ [n]]

= (by Lemma 2.1(3), using that
nfp′(f t y1 · · ·yn) = nfp(f t y1 · · · yn) ∈ TCp

(Yn)
does not contain any of the π1, . . . , πn)

nfp′(f t y1 · · · yn)[yj � − πj | j ∈ [n]][πj � − nfp′(sj) | j ∈ [n]]
= (by Lemma D.1)
nfp′(f t π1 · · ·πn)[πj � − nfp′(sj) | j ∈ [n]]

= (by Lemma 2.5)
nfp′(sub (f t π1 · · ·πn) s1 · · · sn) �

Proof of Lemma 3.4
We prove the following two statements by simultaneous induction:

(∗) For every t ∈ TCp
: nfp′(f t π1 · · ·πn) = nfp′(f ′ t).

(∗∗) For every k ∈
�
, t1, . . . , tk ∈ TCp

, and r̄ ∈ RHS ({f}, Cp, Xk, Yn):

nfp′(r̄[xi, yj � − ti, πj | i ∈ [k], j ∈ [n]]) = nfp′(dec(r̄)[xi � − ti | i ∈ [k]]).

The first statement of the lemma then follows from (∗∗) with k = 1, t1 = t, and
r̄ = r, taking into account that nfp(r[x1 � − t]) = nfp′(r[x1, yj � − t, πj | j ∈ [n]]) due
to the facts that r ∈ RHS ({f}, Cp, X1, Y0) contains no yj for any j ∈ [n], and that
the equations defining f in module m of p were taken over to p′. Regarding the
second statement of the lemma, note that if (m, r) is ncd, then there are pairwise

distinct c1, . . . , cn ∈ C
(0)
p = C

(0)
p′ − {π1, . . . , πn} such that r = (f x1 c1 · · · cn) and

c1, . . . , cn do not occur in right-hand sides of the function definition in m. Thus, in
this case r′ = (sub (f ′ x1) c1 · · · cn) and by the definition of the dec-function and
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by the form of the dummy equations that we add for f ′ at the new constructors
π1, . . . , πn, it is clear that c1, . . . , cn do not occur in right-hand sides of the function
definition in m1.

Now we give the proof of (∗) and (∗∗). To prove (∗) for t = (c t1 · · · tk) with c ∈

C
(k)
p and t1, . . . , tk ∈ TCp

under the assumption that (∗∗) holds for k and t1, . . . , tk, we
instantiate r̄ in (∗∗) to rhsp′,f,c and use that rhsp′,f ′,c = dec(rhsp′,f,c) by construction.
To prove (∗∗) for k ∈

�
and t1, . . . , tk ∈ TCp

under the assumption that (∗) holds
for each of the t1, . . . , tk, we perform an induction on the structure of r̄. The cases
r̄ ∈ Yn and r̄ = (c r1 · · · ra) for some c ∈ C

(a)
p and r1, . . . , ra ∈ RHS ({f}, Cp, Xk, Yn)

are straightforward. The validity in the remaining case is proved as follows.

Case r̄ = (f xi′ r1 · · · rn) for some xi′ ∈ Xk and r1, . . . , rn ∈ RHS ({f}, Cp, Xk, Yn):

nfp′((f xi′ r1 · · · rn)[xi, yj � − ti, πj | i ∈ [k], j ∈ [n]])
= (by substitution and Lemma 3.1)
nfp′(sub (f ti′ π1 · · ·πn) r1[xi, yj � − ti, πj | i ∈ [k], j ∈ [n]]

· · ·
rn[xi, yj � − ti, πj | i ∈ [k], j ∈ [n]])

= (by (∗) for ti′ and the induction hypotheses for the r1, . . . , rn)
nfp′(sub (f ′ ti′) dec(r1)[xi � − ti | i ∈ [k]] · · · dec(rn)[xi � − ti | i ∈ [k]])

= (by definition of dec and substitution)
nfp′(dec(f xi′ r1 · · · rn)[xi � − ti | i ∈ [k]]) �

Proof of Lemma 3.8
We prove the following two statements by simultaneous induction:

(∗) For every t ∈ TCp′′
: nfp′(f ′ t) = nfp′′(f ′ t)[cj � − πj | j ∈ [n]].

(∗∗) For every k ∈
�

and t1, . . . , tk ∈ TCp′′
, for every r̄ ∈ RHS ({f ′}, Cp′ − {c1, . . . ,

cn}∪{sub}, Xk, Y0) that is in the image of dec from Transformation 3.2:

nfp′(r̄[xi � − ti | i ∈ [k]])
= nfp′′(r̄[xi, πj � − ti, cj | i ∈ [k], j ∈ [n]])[cj � − πj | j ∈ [n]].

The lemma is then established by the following calculation for every t ∈ TCp′′
:

nfp′(r′[x1 � − t])
= (by substitution)
nfp′(sub (f ′ t) c1 · · · cn)

= (by Lemma 2.5)
nfp′(f ′ t)[πj � − cj | j ∈ [n]]

= (by (∗))
nfp′′(f ′ t)[cj � − πj | j ∈ [n]][πj � − cj | j ∈ [n]]

= (by Lemma 2.1(3), using that nfp′′(f ′ t) ∈ TCp′′

does not contain any of the π1, . . . , πn)
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nfp′′(f ′ t)[cj � − cj | j ∈ [n]]
= (by Lemma 2.1(1))
nfp′′(f ′ t)

= (by substitution)
nfp′′(r′′[x1 � − t])

To prove (∗) for t = (c t1 · · · tk) with c ∈ C
(k)
p′′ and t1, . . . , tk ∈ TCp′′

under the assump-
tion that (∗∗) holds for k and t1, . . . , tk, we instantiate r̄ in (∗∗) to rhsp′,f ′,c and use
that rhsp′′,f ′,c = rhsp′,f ′,c[πj � − cj | j ∈ [n]] by construction. To prove (∗∗) for k ∈

�

and t1, . . . , tk ∈ TCp′′
under the assumption that (∗) holds for each of the t1, . . . , tk,

we perform an induction on the structure of r̄. The case r̄ ∈ {π1, . . . , πn} is straight-
forward, as is the case r̄ = (c r1 · · · ra) for some c ∈ (Cp′ −{π1, . . . , πn, c1, . . . , cn})

(a)

and some r1, . . . , ra ∈ RHS ({f ′}, Cp′ − {c1, . . . , cn} ∪{sub}, Xk, Y0) that are in the
image of dec. Since r̄ is restricted to be in the image of dec, the only remaining case
is given (and proved) as follows.

Case r̄ = (sub (f ′ xi′) r1 · · · rn) for some xi′ ∈ Xk and some r1, . . . , rn ∈ RHS ({f ′},
Cp′ − {c1, . . . , cn}∪{sub}, Xk, Y0) that are in the image of dec:

nfp′((sub (f ′ xi′) r1 · · · rn)[xi � − ti | i ∈ [k]])
= (by substitution and Lemma 2.5)
nfp′(f ′ ti′)[πj � − nfp′(rj[xi � − ti | i ∈ [k]]) | j ∈ [n]]

= (by (∗) for ti′ and the induction hypotheses for the r1, . . . , rn)
nfp′′(f ′ ti′)[cj � − πj | j ∈ [n]]

[πj � − nfp′′(rj[xi, πj′ � − ti, cj′ | i ∈ [k], j ′ ∈ [n]])[cj′ � − πj′ | j ′ ∈ [n]]
| j ∈ [n]]

= (by Lemma 2.1(3), using that nfp′′(f ′ ti′) ∈ TCp′′

does not contain any of the π1, . . . , πn)
nfp′′(f ′ ti′)[cj � − nfp′′(rj[xi, πj′ � − ti, cj′ | i ∈ [k], j ′ ∈ [n]])[cj′ � − πj′ | j ′ ∈ [n]]

| j ∈ [n]]
= (by Lemma 2.1(2))
nfp′′(f ′ ti′)[cj � − nfp′′(rj[xi, πj′ � − ti, cj′ | i ∈ [k], j ′ ∈ [n]]) | j ∈ [n]]

[cj′ � − πj′ | j ′ ∈ [n]]
= (by substitution and Lemma 2.5)
nfp′′((sub (f ′ xi′) r1 · · · rn)[xi, πj′ � − ti, cj′ | i ∈ [k], j ′ ∈ [n]])
[cj′ � − πj′ | j ′ ∈ [n]] �

Definition D.2 (nondeterministic tree substitution)
Let Σ be a ranked alphabet and V , V ′ be sets of variables, where Σ∩ (V ∪V ′) = � .

Let n ∈
�

and let α1, . . . , αn ∈ Σ(0) ∪ V be pairwise distinct, where {α1, . . . , αn}
⊇ V . Then, for sets T1, . . . , Tn ⊆ TΣ(V ′), the nondeterministic tree substitution

� [α1, . . . , αn � �− T1, . . . , Tn] (or � [αi � �− Ti | i ∈ [n]]) is a function mapping each tree
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from TΣ(V ) to a set of trees from TΣ(V ′). It is defined as follows:

αj[αi � �− Ti | i ∈ [n]] = Tj , for all j ∈ [n]
(σ t1 · · · tk)[αi � �− Ti | i ∈ [n]] = {σ s1 · · · sk | ∀j ∈ [k]. sj ∈ tj[αi � �− Ti | i ∈ [n]]} ,

for all σ ∈ (Σ − {α1, . . . , αn})
(k), t1, . . . , tk ∈ TΣ(V ).

Note that substitution by � [αi � �− Ti | i ∈ [n]] is independently nondeterministic for
different occurrences of the same αi. For example, (σ x1 x1)[x1 � �− {β, γ}] does not
only contain (σ β β) and (σ γ γ), but also (σ β γ) and (σ γ β). 3

Lemma D.3 (properties of nondeterministic tree substitutions)
Let Σ be a ranked alphabet, V be a set of variables disjoint from Σ, n ∈

�
, and

α1, . . . , αn ∈ Σ(0) ∪ V be pairwise distinct, where V ⊆ {α1, . . . , αn}. For every
t ∈ TΣ(V ), T ⊆ TΣ, finite set J , and ti, t

′
i ∈ TΣ(V ) and Ti, T

′
i , Ti,j ⊆ TΣ for every

i ∈ [n] and j ∈ J :

1. t[αi � �− {ti} | i ∈ [n]] = {t[αi � − ti | i ∈ [n]]},

2. t[αi � − ti | i ∈ [n]][β, αi′ � �− T, Ti′ | i′ ∈ [n]]
= t[β, αi � �− T, ti[β, αi′ � �− T, Ti′ | i′ ∈ [n]] | i ∈ [n]]

for every β ∈ Σ(0) − {α1, . . . , αn},

3. t[αi � �− Ti | i ∈ [n]] ⊆ t[αi � �− T ′
i | i ∈ [n]] if Ti ⊆ T ′

i for every i ∈ [n], and

4.
⋃

j∈J

t[αi � �− Ti,j | i ∈ [n]] ⊆ t[αi � �−
⋃

j∈J

Ti,j | i ∈ [n]].

Proof
Statements 1, 2, and 3 have straightforward proofs by induction on the structure of
t. Statement 4 follows easily from statement 3 (by Ti,j ⊆

⋃

j∈J

Ti,j). �

Proof of Lemma 3.17
First, consider Definition D.2 and Lemma D.3 above. For fixed s1, . . . , sn ∈ TCp∪Fp′

,
we will prove that for every h ∈

�
and t ∈ TCp

with height(t) ≤ h there is a G ∈ Gh

(where Gh is defined as in Definition 3.15, based on K and π0) such that for every
v ∈ [0, n] and θ1, . . . , θn ∈ TCp∪{f}:

nfp′(subv (f t θ1 · · · θn) s1 · · · sn)
∈ nfp′(f t y1 · · · yn)[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ G(v, 0)},

yj � �− {nfp′(subv′ θj s1 · · · sn) | v′ ∈ G(v, j)} | j ∈ [n]].
(4)

Instantiating v to u, setting θ1, . . . , θn = π0, . . . , π0, and using that if K is successful
for (m, r) with subu, then for every G ∈

⋃

h∈
�
Gh and j ∈ [0, n], G(u, j) ⊆ {j}, we

obtain for every t ∈ TCp
:

nfp′(subu (f t π0 · · ·π0) s1 · · · sn)
∈ nfp′(f t y1 · · · yn)[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ I0},

yj � �− {nfp′(subv′ π0 s1 · · · sn) | v′ ∈ Ij} | j ∈ [n]]
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for some I0, . . . , In with Ij ⊆ {j} for every j ∈ [0, n]. Using [n]∩I0 = � and applying
Lemma D.3(3), this implies:

nfp′(subu (f t π0 · · ·π0) s1 · · · sn)
∈ nfp′(f t y1 · · · yn)[π0 � �− {π0},

yj � �− {nfp′(subj π0 s1 · · · sn)} | j ∈ [n]].

Using the equations which define sub1, . . . , subn on the value π0 in the sub-like
module induced by K and π0, together with Lemma D.3(1) we obtain

nfp′(subu (f t π0 · · ·π0) s1 · · · sn) ∈ {nfp′(f t y1 · · · yn)[π0 � − π0,
yj � − nfp′(sj) | j ∈ [n]]} ,

from which the statement of the lemma follows by Lemma D.1.
Now we prove (4) by induction on h. For h = 0 there is nothing to prove because

there are no trees of height 0 or smaller. For the induction step (h 7→ h+1) it suffices

to show that for every c ∈ C
(k)
p and t1, . . . , tk ∈ TCp

with height(ti) ≤ h for every
i ∈ [k], there is a G ∈ Gh+1 such that for every v ∈ [0, n] and θ1, . . . , θn ∈ TCp∪{f}:

nfp′(subv (f (c t1 · · · tk) θ1 · · · θn) s1 · · · sn)
∈ nfp′(f (c t1 · · · tk) y1 · · · yn)[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ G(v, 0)},

yj � �− {nfp′(subv′ θj s1 · · · sn) | v′ ∈ G(v, j)}
| j ∈ [n]] ,

(5)

where by the induction hypothesis for h we may assume that there are G1, . . . , Gk ∈
Gh such that for every i ∈ [k], v ∈ [0, n], and θ′1, . . . , θ

′
n ∈ TCp∪{f}:

nfp′(subv (f ti θ′1 · · · θ
′
n) s1 · · · sn)

∈ nfp′(f ti y1 · · · yn)[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ Gi(v, 0)},
yj � �− {nfp′(subv′ θ′j s1 · · · sn) | v′ ∈ Gi(v, j)} | j ∈ [n]].

(6)

By Definition 3.15, Gh+1 contains the function G = rchG1,...,Gk
(rhsp,f,c) for the par-

ticular G1, . . . , Gk assumed for (6). Hence, using that rhsp′,f,c = rhsp,f,c, to estab-
lish (5) it suffices to show that for every r̄ ∈ RHS ({f}, Cp, Xk, Yn), v ∈ [0, n], and
θ1, . . . , θn ∈ TCp∪{f}:

nfp′(subv r̄[xi, yj � − ti, θj | i ∈ [k], j ∈ [n]] s1 · · · sn)
∈ nfp′(r̄[xi � − ti | i ∈ [k]])[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ rchG1,...,Gk

(r̄)(v, 0)},
yj � �− {nfp′(subv′ θj s1 · · · sn) | v′ ∈ rchG1,...,Gk

(r̄)(v, j)}
| j ∈ [n]].

The proof is by induction on the structure of r̄ as follows.

Case r̄ = π0:

nfp′(subv π0[xi, yj � − ti, θj | i ∈ [k], j ∈ [n]] s1 · · · sn)
= (using the equation for subv at π0 in the
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sub-like module induced by K and π0)
{

π0 if v = 0
nfp′(sv) otherwise

∈ (by substitution and rchG1,...,Gk
(π0)(v, 0) = {v})

nfp′(π0[xi � − ti | i ∈ [k]])[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ rchG1,...,Gk
(π0)(v, 0)},

yj � �− {nfp′(subv′ θj s1 · · · sn) | v′ ∈ rchG1,...,Gk
(π0)(v, j)}

| j ∈ [n]]

Case r̄ = yj′ ∈ Yn:

nfp′(subv yj′[xi, yj � − ti, θj | i ∈ [k], j ∈ [n]] s1 · · · sn)
∈ (by substitution and rchG1,...,Gk

(yj′)(v, j ′) = {v})
nfp′(yj′[xi � − ti | i ∈ [k]])[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ rchG1,...,Gk

(yj′)(v, 0)},
yj � �− {nfp′(subv′ θj s1 · · · sn) | v′ ∈ rchG1,...,Gk

(yj′)(v, j)}
| j ∈ [n]]

Case r̄ = (c r1 · · · ra) for some c ∈ (Cp −{π0})
(a) and r1, . . . , ra ∈ RHS ({f}, Cp, Xk,

Yn):

nfp′(subv (c r1 · · · ra)[xi, yj � − ti, θj | i ∈ [k], j ∈ [n]] s1 · · · sn)
= (using the equation for subv at c in the

sub-like module induced by K and π0)
c nfp′(subK(v,c,1) r1[xi, yj � − ti, θj | i ∈ [k], j ∈ [n]] s1 · · · sn)

· · ·
nfp′(subK(v,c,a) ra[xi, yj � − ti, θj | i ∈ [k], j ∈ [n]] s1 · · · sn)

∈ (see below)
nfp′((c r1 · · · ra)[xi � − ti | i ∈ [k]])
[π0 � �− {π0} ∪

⋃

l∈[a]

{nfp′(sv′) | v′ ∈ [n] ∩ rchG1,...,Gk
(rl)(K(v, c, l), 0)},

yj � �−
⋃

l∈[a]

{nfp′(subv′ θj s1 · · · sn) | v′ ∈ rchG1,...,Gk
(rl)(K(v, c, l), j)} | j ∈ [n]]

= (by definition of rchG1,...,Gk
(c r1 · · · ra))

nfp′((c r1 · · · ra)[xi � − ti | i ∈ [k]])
[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ rchG1,...,Gk

(c r1 · · · ra)(v, 0)},
yj � �− {nfp′(subv′ θj s1 · · · sn) | v′ ∈ rchG1,...,Gk

(c r1 · · · ra)(v, j)} | j ∈ [n]]

The above gap can be closed if for every l′ ∈ [a] we can establish:

nfp′(subK(v,c,l′) rl′ [xi, yj � − ti, θj | i ∈ [k], j ∈ [n]] s1 · · · sn)
∈ nfp′(rl′[xi � − ti | i ∈ [k]])

[π0 � �− {π0} ∪
⋃

l∈[a]

{nfp′(sv′) | v′ ∈ [n] ∩ rchG1,...,Gk
(rl)(K(v, c, l), 0)},

yj � �−
⋃

l∈[a]

{nfp′(subv′ θj s1 · · · sn) | v′ ∈ rchG1,...,Gk
(rl)(K(v, c, l), j)} | j ∈ [n]].

But this is an immediate consequence of the induction hypothesis for rl′ and
Lemma D.3(3).
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Case r̄ = (f xi r1 · · · rn) for some xi ∈ Xk and r1, . . . , rn ∈ RHS ({f}, Cp, Xk, Yn):

nfp′(subv (f xi r1 · · · rn)[xi′ , yj′ � − ti′ , θj′ | i′ ∈ [k], j ′ ∈ [n]] s1 · · · sn)
∈ (by substitution and by the induction hypothesis (6) on page 43)
nfp′(f ti y1 · · · yn)
[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ Gi(v, 0)},
yj � �− {nfp′(subv′ rj[xi′ , yj′ � − ti′ , θj′ | i′ ∈ [k], j ′ ∈ [n]] s1 · · · sn) | v′ ∈ Gi(v, j)}

| j ∈ [n]]
⊆ (by the induction hypotheses for the r1, . . . , rn and Lemma D.3(3))
nfp′(f ti y1 · · · yn)
[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ Gi(v, 0)},
yj � �−

⋃

v′∈Gi(v,j)

nfp′(rj[xi′ � − ti′ | i′ ∈ [k]])
[π0 � �− {π0} ∪ {nfp′(sv′′) | v′′ ∈ [n] ∩ rchG1,...,Gk

(rj)(v
′, 0)},

yj′ � �− {nfp′(subv′′ θj′ s1 · · · sn) | v′′ ∈ rchG1,...,Gk
(rj)(v

′, j ′)}
| j ′ ∈ [n]] | j ∈ [n]]

⊆ (by Lemma D.3(4) and Lemma D.3(3), twice)
nfp′(f ti y1 · · · yn)
[π0 � �− {π0} ∪ {nfp′(sv′) | v′ ∈ [n] ∩ Gi(v, 0)},
yj � �− nfp′(rj[xi′ � − ti′ | i′ ∈ [k]])

[π0 � �− {π0} ∪
⋃

v′∈Gi(v,j)

{nfp′(sv′′) | v′′ ∈ [n] ∩ rchG1,...,Gk
(rj)(v

′, 0)},

yj′ � �−
⋃

v′∈Gi(v,j)

{nfp′(subv′′ θj′ s1 · · · sn) | v′′ ∈ rchG1,...,Gk
(rj)(v

′, j ′)}

| j ′ ∈ [n]] | j ∈ [n]]
⊆ (by Lemma D.3(3), twice)
nfp′(f ti y1 · · · yn)

[π0 � �− {π0} ∪
{

nfp′(sv′′) | v′′ ∈ [n] ∩
(

Gi(v, 0) ∪
⋃

l∈[n]

⋃

v′∈Gi(v,l)

rchG1,...,Gk
(rl)(v

′, 0)
)}

,

yj � �− nfp′(rj[xi′ � − ti′ | i′ ∈ [k]])

[π0 � �− {π0} ∪
{

nfp′(sv′′) | v′′ ∈ [n] ∩
(

Gi(v, 0) ∪
⋃

l∈[n]

⋃

v′∈Gi(v,l)

rchG1,...,Gk
(rl)(v

′, 0)
)}

,

yj′ � �−
⋃

l∈[n]

⋃

v′∈Gi(v,l)

{nfp′(subv′′ θj′ s1 · · · sn) | v′′ ∈ rchG1,...,Gk
(rl)(v

′, j ′)}

| j ′ ∈ [n]] | j ∈ [n]]
= (by Lemma D.3(2))
nfp′(f ti y1 · · · yn)
[yj � − nfp′(rj[xi′ � − ti′ | i′ ∈ [k]]) | j ∈ [n]]

[π0 � �− {π0} ∪
{

nfp′(sv′′) | v′′ ∈ [n] ∩
(

Gi(v, 0) ∪
⋃

l∈[n]

⋃

v′∈Gi(v,l)

rchG1,...,Gk
(rl)(v

′, 0)
)}

,

yj′ � �−
⋃

l∈[n]

⋃

v′∈Gi(v,l)

{nfp′(subv′′ θj′ s1 · · · sn) | v′′ ∈ rchG1,...,Gk
(rl)(v

′, j ′)} | j ′ ∈ [n]]

= (by substitution, Lemma D.1, and definition of rchG1,...,Gk
(f xi r1 · · · rn))
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nfp′((f xi r1 · · · rn)[xi′ � − ti′ | i′ ∈ [k]])
[π0 � �− {π0} ∪ {nfp′(sv′′) | v′′ ∈ [n] ∩ rchG1,...,Gk

(f xi r1 · · · rn)(v, 0)},
yj′ � �− {nfp′(subv′′ θj′ s1 · · · sn) | v′′ ∈ rchG1,...,Gk

(f xi r1 · · · rn)(v, j ′)}
| j ′ ∈ [n]] �

Proof of Theorem 3.19
By copying the simultaneous induction from the proof of Lemma 3.4, except for using
Lemma 3.17 instead of Lemma 3.1, we can prove the following two statements:

(∗) For every t ∈ TCp
: nfp′(f t π0 · · ·π0) = nfp′(f ′ t).

(∗∗) For every k ∈
�
, t1, . . . , tk ∈ TCp

, and r̄ ∈ RHS ({f}, Cp, Xk, Yn):

nfp′(r̄[xi, yj � − ti, π0 | i ∈ [k], j ∈ [n]]) = nfp′(adv(r̄)[xi � − ti | i ∈ [k]]).

The theorem then follows from (∗) since r = (f x1 π0 · · ·π0) and r′ = (f ′ x1). Here
one has to take into account that nfp(f t π0 · · ·π0) = nfp′(f t π0 · · ·π0) due to the
fact that the module m of p, defining f , was taken over to p′. �
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