
Conditions for Efficiency Improvement by

Tree Transducer Composition?

Janis Voigtländer??

Department of Computer Science, Dresden University of Technology
01062 Dresden, Germany. E-mail: voigt@tcs.inf.tu-dresden.de

Abstract. We study the question of efficiency improvement or dete-
rioration for a semantic-preserving program transformation technique
based on macro tree transducer composition. By annotating functional
programs to reflect the internal property “computation time” explicitly
in the computed output, and by manipulating such annotations, we for-
mally prove syntactic conditions under which the composed program is
guaranteed to be more efficient than the original program, with respect
to call-by-need reduction to normal form. The developed criteria can
be checked automatically, and thus are suitable for integration into an
optimizing functional compiler.

1 Introduction

Lazy functional languages are well suited for a modular programming style,
where a task is solved by combining solutions of subproblems. Unfortunately,
modular programs often lack efficiency compared to other — often less under-
standable — programs that solve the same tasks. These inefficiencies are caused,
e.g., by the production and consumption of structured intermediate results such
as lists or trees. As an example, consider the following definitions in Haskell:

data Nat = S Nat | Z

exp :: Nat → Nat → Nat
exp (S x) y = exp x (exp x y)
exp Z y = S y

div :: Nat → Nat
div (S x) = div ′ x

div Z = Z

div ′ :: Nat → Nat
div ′ (S x) = S (div x)
div ′ Z = Z

The function exp — computing exp (Sn Z) (Sm Z) = S2n+m Z — is defined
using an accumulating parameter y, which will also be called context parameter
henceforth. The functions div and div ′ — computing div (Sn Z) = Sn div 2 Z —
are defined by mutual recursion. If we sequentially compose exp and div — by
computing for some value t of type Nat the expression e = (div (exp t Z)) —
an intermediate data structure is created by exp and consumed by the div - and
div ′-functions. A standard technique for eliminating intermediate results is clas-
sical deforestation [13], an algorithmic instance of the unfold/fold-technique [1].

? In RTA 2002, Proceedings, volume 2378 of LNCS, pages 222–236. c© Springer-Verlag.
?? Research supported by the DFG under grant KU 1290/2-1.

However, classical deforestation does not succeed in optimizing e, due to its
well-known problem of not reaching accumulating parameters [2]. Also, classical
deforestation was only proved to be non-deteriorating for linear programs or for
call-by-name evaluation without sharing [11].

Kühnemann [7,8] tackled the problem of eliminating intermediate data struc-
tures in accumulating parameters by using composition results from the theory
of tree transducers [5]. The functional programs considered are extended schemes
of primitive recursion — allowing mutual recursion and nesting of terms in con-
text parameter positions — so called macro tree transducers (for short mtts).
Already Engelfriet and Vogler [4] showed that the sequential composition of two
mtts can be realized by a single mtt, if one of the original mtts is defined without
using context parameters. For the above example, e would thus be transformed
to e′ = (f t (div Z) (div ′ Z)), with new functions f and g constructed as1:

f (S x) y1 y2 = f x (f x y1 y2) (g x y1 y2)
f Z y1 y2 = y2

g (S x) y1 y2 = g x (f x y1 y2) (g x y1 y2)
g Z y1 y2 = S y1

The transformed program avoids the creation of an intermediate result and its
eventual consumption, with obvious benefits for the efficiency. In particular,
e′ needs fewer lazy evaluation steps for reduction to normal form than e.

In general, the number of call-by-need reduction steps performed by the
transformed program might also increase compared to the original one. If, for
example, we consider the expression (exp (div t) Z), tree transducer compo-
sition can again eliminate the intermediate result. However, in this case the
transformed program will — except for very small inputs — perform more call-
by-need reduction steps than the original program.

Clearly, in order to use tree transducer composition as a program transfor-
mation technique in an optimizing compiler, we should be able to discriminate
programs for which the transformation degrades efficiency from those for which
the transformation is indeed beneficial. In this paper we develop such criteria
that can be checked automatically by a compiler. These criteria are sufficient to
classify the various examples of the composition techniques from [4] given in [9],
where the performance improvement achieved by tree transducer composition
for particular programs was assured by ad hoc reasoning or by experiments. Our
results improve on formal efficiency considerations by Kühnemann [8] for linear
programs and by Höff [6] also for nonlinear ones. For example, our criteria can
detect that the replacement of e from the introductory example by e′ is safe
with respect to efficiency, which was not captured by previous results. Since in
the case that the first involved mtt has no context parameters the tree trans-
ducer composition technique is equivalent to classical deforestation (cf. [8]), our
results also establish call-by-need performance improvements through classical
deforestation for some nonlinear programs.
1 The basic idea is to construct definitions for f and g such that for every t = (Sn Z)

and t1 = (Sm Z): f t (div t1) (div ′ t1) = div (exp t t1)
g t (div t1) (div ′ t1) = div ′ (exp t t1) .

The remainder of this paper is organized as follows. In Sect. 2 we define
basic notations and concepts of macro tree transducer units. Section 3 recalls
program transformation by tree transducer composition. In Sect. 4 we develop
our formal efficiency analysis and give the main theorems, with application to
tree transducer composition and classical deforestation. Finally, Sect. 5 contains
future research topics.

2 Preliminaries

We denote by IN the set of natural numbers including 0. For n ∈ IN, we denote
by [n] the set {1, . . . , n} ⊆ IN, and by Xn the finite set {x1, . . . , xn} of variables;
analogously for Yn and Zn.

We denote simultaneous substitution of v1, . . . , vn for u1, . . . , un in v by
v[u1, . . . , un ← v1, . . . , vn], but will also use an alternative notation similar to set
comprehensions, e.g., v[ui ← vi | i ∈ [n]]. We write substitutions left-associative.

A ranked alphabet is a pair (Σ, rankΣ), where Σ is a finite, nonempty set of
symbols and rankΣ assigns to every σ ∈ Σ a natural number k, which will also be
given by writing σ(k). For every k ∈ IN, we define Σ(k) = {σ ∈ Σ | rankΣ(σ) =
k}. For every set A disjoint from Σ, we define the set TΣ(A) of trees over Σ

indexed by A as the smallest set T such that (i) A ⊆ T and (ii) if σ ∈ Σ(k) and
t1, . . . , tk ∈ T , then also (σ t1 · · · tk) ∈ T . If readability allows, outer brackets
of trees will be omitted. We denote TΣ(∅) by TΣ . For every set C ⊆ Σ ∪ A, we
denote the number of occurrences of symbols from C in a tree t by |t|C . For a
singleton set C = {c}, we denote |t|{c} by |t|c.

We consider left-linear rewrite systems [3] with rewrite rules of the form
lhs = rhs — with lhs and rhs being trees over ranked alphabets indexed by
a set of variables, which will usually not be mentioned explicitly — where the
right-hand side rhs contains only variables that also occur in lhs. A rewrite
system R induces a binary nondeterministic reduction relation ⇒R describing
left-to-right application of a rule from R in some context. We use the well-known
concepts of confluence, termination and normal form. For a confluent and ter-
minating reduction relation ⇒R, we denote the unique normal form of a tree t

with respect to ⇒R by nf (⇒R, t). While ⇒R does not fix a reduction strategy,
our efficiency analysis is concerned with lazy functional programming languages.
Hence, we consider call-by-need reduction steps [14] (leftmost-outermost reduc-
tion with sharing) and denote by cbn(R, t) the number of such steps required to
reach the normal form nf (⇒R, t).

We model functional programs by macro tree transducer units (for short mtt
units). Firstly, we describe the possible shapes of right-hand sides of their rules.

Definition 1. Let Q and ∆ be ranked alphabets and k, r ∈ IN.
The set RHS(Q, ∆, k, r) of right-hand sides over Q and ∆, with k recursion
variables and r context variables, is the smallest set RHS ⊆ T∆∪Q(Xk ∪ Yr)
such that (i) Yr ⊆ RHS, (ii) for every δ ∈ ∆(n) and φ1, . . . , φn ∈ RHS:
(δ φ1 · · · φn) ∈ RHS, and (iii) for every q ∈ Q(n+1) with n ∈ IN, xi ∈ Xk

and φ1, . . . , φn ∈ RHS: (q xi φ1 · · · φn) ∈ RHS.

Definition 2. An mtt unit M is a tuple (Q, Σ, ∆, R) with a ranked alphabet
Q of states, where Q(0) = ∅, a ranked alphabet Σ of input symbols, a ranked
alphabet ∆ of output symbols, where Q∩ (Σ∪∆) = ∅, and a set R of rules, such
that R contains for every k, r ∈ IN, σ ∈ Σ(k) and q ∈ Q(r+1), exactly one rule of
the form: q (σ x1 · · · xk) y1 · · · yr = rhsM,q,σ, with rhsM,q,σ ∈ RHS(Q, ∆, k, r).

Of course, the actual variable names used in rules R of an mtt unit are not fixed
to come from Xk and Yr for some k, r ∈ IN; consistent renaming is allowed. The
semantics of an mtt unit is given by the reduction relation induced by its rules.

We give a rather artificial example of three mtt units that will be used to
illustrate important phenomena in Sect. 4. For more practical examples see [9],
where it was demonstrated that also typical functions on polymorphic data types
and some higher-order functions like map can be viewed as mtt units by choosing
appropriate function and constructor symbols.

Example 1. Let Σ = Ω = {S(1), Z(0)} and ∆ = {δ(2), γ(1), α(0)}. Then M1 =

({q(2)}, Σ, ∆, R1), M ′
1 = ({q′(3)}, Σ, ∆, R′

1) and M2 = ({p
(1)
1 , p

(1)
2 }, ∆, Ω, R2) are

mtt units, where R1, R′
1 and R2 contain rules as follows:

R1 :
q (S x1) y1 = γ (q x1 (δ (q x1 y1) y1))
q Z y1 = y1

R′
1 :
q′ (S x1) y1 y2 = δ (q′ x1 y2 (γ y1)) (γ (q′ x1 y1 y2))
q′ Z y1 y2 = y1

R2 : p1 (δ x1 x2) = p2 x1

p1 (γ x1) = S (p2 x1)
p1 α = Z

p2 (δ x1 x2) = p1 x2

p2 (γ x1) = p1 x1

p2 α = Z .

Definition 3. An mtt unit M = (Q, Σ, ∆, R) is:

– a top-down tree transducer unit (for short tdtt unit), if Q = Q(1)

– recursion-linear, if for every q ∈ Q, σ ∈ Σ(k), i ∈ [k]: |rhsM,q,σ |xi
<
= 1

– context-linear, if for every q ∈ Q(r+1), σ ∈ Σ, h ∈ [r]: |rhsM,q,σ |yh
<
= 1

– linear, if it is recursion-linear and context-linear
– recursion-nondeleting, if for every q ∈ Q, σ ∈ Σ(k) and i ∈ [k]:
|rhsM,q,σ |xi

>
= 1

– context-nondeleting, if for every q ∈ Q(r+1), σ ∈ Σ and h ∈ [r]:
|rhsM,q,σ |yh

>
= 1

– basic, if the right-hand sides of its rules do not contain nested calls, i.e.,
subtrees of the form (q xi · · · (q′ xi′ · · ·) · · ·)

– atmost, if it is recursion-linear, and it is context-linear or basic
– atleast, if it is recursion-nondeleting, and it is context-nondeleting or basic.

3 Tree Transducer Composition

In this section we recall the semantic-preserving composition of two mtt units
into a single mtt unit (the meaning of “semantic-preserving” will be made precise
in Lemma 1 below). Constructions for performing such a composition in the cases
that the first or the second mtt unit is a tdtt unit were given already in [4]. Here,
we present a single transformation that captures both cases.

Construction 1. Let M1 = (Q, Σ, ∆, R1) and M2 = (P, ∆, Ω, R2) be mtt
units, such that one of the two is a tdtt unit, and Q∩P = ∅. Let m ∈ IN be the
number of elements of P , and fix some ordering on P , such that P = {p1, . . . , pm}.
The composed mtt unit will have the set of states F = {qp(r∗m+s+1) | q ∈
Q(r+1), p ∈ P (s+1)}. We use two rewrite systems:

Pre , which contains for every h ∈ [r] with Q(r+1) 6= ∅ and every p ∈ P (1), the
rewrite rule: p yh = yh,p. Here the yh and yh,p are treated as ordinary sym-
bols, rather than as variables of the rewrite system.

Comp, which contains for every q ∈ Q(r+1) and p ∈ P (s+1), the rewrite rule:

p (q x y1 · · · yr) z1 · · · zs = qp x (p1 y1) · · · (pm y1) · · · (p1 yr) · · · (pm yr)
z1 · · · zs .

Here x, y1, . . . , yr and z1, . . . , zs are considered as variables of the rewrite
system. Since M1 or M2 is a tdtt unit, never both the ys and zs will be
present. We abbreviate the right-hand side of the above rewrite rule as ζq,p.

Since the ranked alphabets P, ∆, {y
(0)
1 , y

(0)
2 , . . .} and Q are pairwise disjoint,

there are no critical pairs [3] in R2 ∪Pre ∪Comp . Hence, the reduction relation
⇒R2∪Pre∪Comp is confluent. It is also terminating, because for every rule the
first arguments of calls to states of P in the right-hand side are proper subtrees
of the first argument of the call on the left-hand side.

Now, we can construct the mtt unit M1M2 = (F, Σ, Ω, R1R2) with rules as
follows. For every q ∈ Q(r+1), σ ∈ Σ(k), rule q (σ x1 · · · xk) y1 · · · yr = rhsM1,q,σ

in R1, and p ∈ P (s+1), R1R2 contains the rule:

qp (σ x1 · · · xk) y1,p1 · · · yr,pm
z1 · · · zs =nf (⇒R2∪Pre∪Comp , p rhsM1,q,σ z1 · · · zs)

Then, M1M2 implements the sequential composition of M1 and M2, in the sense
of the following lemma.

Lemma 1. For every rewrite rule (p (q x y1 · · · yr) z1 · · · zs = ζq,p) ∈ Comp,
t ∈ TΣ, t1, . . . , tr ∈ T∆ and t′1, . . . , t

′
s ∈ TΩ:

1. nf (⇒R1∪R2 , p (q t y1 · · · yr) z1 · · · zs) = nf (⇒
R1R2

, ζq,p[x← t])

2. nf (⇒R1∪R2 , p (q t t1 · · · tr) t′1 · · · t
′
s)

= nf(⇒
R1R2∪R2

, ζq,p[x← t][y1, . . . , yr, z1, . . . , zs ← t1, . . . , tr, t
′
1, . . . , t

′
s]) .

Proof. Both assertions follow from statement (II)(a)(i) of Lemma A.12 in [12]
for φ = (q x1 y1 · · · yr), respectively for φ = (q x1 t1 · · · tr). ut

Example 2. We compose the mtt units M1 and M2 from Example 1, yielding the
mtt unit M1M2 = ({qp1

(3), qp2
(3)}, Σ, Ω, R1R2) with the following set of rules:

qp1 (S x1) y1,p1 y1,p2 = S (qp2 x1 (qp2 x1 y1,p1 y1,p2) y1,p1)
qp1 Z y1,p1 y1,p2 = y1,p1

qp2 (S x1) y1,p1 y1,p2 = qp1 x1 (qp2 x1 y1,p1 y1,p2) y1,p1

qp2 Z y1,p1 y1,p2 = y1,p2 .

Note that here we have Comp = {p1 (q x y1) = ζq,p1 , p2 (q x y1) = ζq,p2},
where ζq,p1 = qp1 x (p1 y1) (p2 y1) and ζq,p2 = qp2 x (p1 y1) (p2 y1).

Another example of the application of Construction 1 can be found in the intro-

duction, where f = expdiv and g = expdiv ′.

An optimizing compiler can take advantage of the composition construction
by detecting appropriate places in the program where the rewrite rules from
Comp can be applied. While the soundness of these rewritings is guaranteed by
Lemma 1, it remains to be shown under which conditions Construction 1 actually
leads to performance improvements over the original program (using mtt units
M1 and M2) by the composed program (additionally containing the mtt unit
M1M2, and with rewritings from Comp having been applied). From the form of
rewrite rules in Comp it is obvious that intermediate data structures produced
by M1 in the original program have been removed in the composed program.
Thus, no memory cells for this intermediate result have to be allocated in the
heap and later be deallocated by the garbage collector. This beneficial effect,
however, might be rendered useless, if the composed program needs to perform
more reduction steps than the original one. Hence, we would like to establish
conditions under which we have for every q ∈ Q(r+1), p ∈ P (s+1), t ∈ TΣ ,
t1, . . . , tr ∈ T∆ and t′1, . . . , t

′
s ∈ TΩ :

cbn(R1R2 ∪ R2, ζq,p[x← t][y1, . . . , yr, z1, . . . , zs ← t1, . . . , tr, t
′
1, . . . , t

′
s])

<
= cbn(R1 ∪ R2, p (q t t1 · · · tr) t′1 · · · t

′
s) .

4 Efficiency Analysis

We want to formally relate the efficiency of a composed program obtained by
Construction 1 to the efficiency of the original program. As computation time is
an intensional property — i.e., it cannot be extracted from the result of a com-
putation — such a study cannot directly use the algebraic methods developed to
reason about extensional properties, e.g., to establish the correctness of the com-
position construction in Lemma 1. A well-known strategy in this situation is to
externalize the internal property, e.g., by transforming or annotating programs.

Rosendahl [10] produces for every first-order functional program a step-
counting version that — when called with the same arguments — returns the
number of call-by-value reduction steps performed by the original program.
Sands [11] developed a call-by-name improvement theory and used it to prove the
correctness of unfold/fold-transformations [1] by annotating functional programs
with a special identity function that represents a single “tick” of computation
time, and by stating a set of laws that can be used to derive statements about
the relative efficiency of program expressions.

This use of a special symbol to indicate performed reduction steps is similar
to what we will be doing in Lemmata 2 and 3 in Sect. 4.2. Note, however, that
our transformation technique goes beyond unfold/fold-steps if M1 is not a tdtt
unit, hence Sands’ results can neither be used to prove Lemma 1, nor to establish
criteria under which Construction 1 improves the efficiency of programs.

4.1 Annotating Programs

In the following, let M1 = (Q, Σ, ∆, R1) and M2 = (P, ∆, Ω, R2) be two fixed
mtt units, one of which is a tdtt unit, with �, ◦, •, ? 6∈ Σ ∪ ∆ ∪ Ω ∪ Q ∪ P . We
use the notions and naming conventions from Construction 1. Based on M1 and
M2, we define — by annotating and adding rules — several new mtt units, the
relevance of which will only become clear later.

Definition 4. An mtt unit M
left→right
1 has components (Q, Σ ′, ∆′, R

left→right
1)

with Σ′ and ∆′ obtained by adding to Σ and ∆ symbols from {�(1), ◦(1), •(1), ?(1)}

that are mentioned in left and in right, respectively, and with R
left→right
1 contain-

ing rules as given in the table below.
Several mtt units M

left→right
2 = (P, ∆′, Ω′, R

left→right
2) are introduced analogously.

R→�
1 : q (σ x1 · · · xk) y1 · · · yr = � (rhsM1,q,σ) ∀q ∈ Q(r+1), σ ∈ Σ(k)

R�→•
2 : p (δ x1 · · · xk) z1 · · · zs = • (rhsM2,p,δ) ∀p ∈ P (s+1), δ ∈ ∆(k)

p (� x1) z1 · · · zs = • (p x1 z1 · · · zs) ∀p ∈ P (s+1)

R→•
2 : p (δ x1 · · · xk) z1 · · · zs = • (rhsM2,p,δ) ∀p ∈ P (s+1), δ ∈ ∆(k)

R�→◦
2 : p (δ x1 · · · xk) z1 · · · zs = rhsM2,p,δ ∀p ∈ P (s+1), δ ∈ ∆(k)

p (� x1) z1 · · · zs = ◦ (p x1 z1 · · · zs) ∀p ∈ P (s+1)

R→?
2 : p (δ x1 · · · xk) z1 · · · zs = ? (rhsM2,p,δ) ∀p ∈ P (s+1), δ ∈ ∆(k)

R◦•→◦•
2 : p (δ x1 · · · xk) z1 · · · zs = rhsM2,p,δ ∀p ∈ P (s+1), δ ∈ ∆(k)

p (◦ x1) z1 · · · zs = ◦ (p x1 z1 · · · zs) ∀p ∈ P (s+1)

p (• x1) z1 · · · zs = • (p x1 z1 · · · zs) ∀p ∈ P (s+1)

R
→◦•,0
1 : q (σ x1 · · · xk) y1 · · · yr = ∀q ∈ Q(r+1), σ ∈ Σ(k)

◦ (rhsM1,q,σ [(δ · · ·)← • (δ · · ·) | δ ∈ ∆])

R
→◦•,1
1 : q (σ x1 · · · xk) y1 · · · yr = ∀q ∈ Q(r+1), σ ∈ Σ(k)

rhsM1,q,σ [(δ · · ·) ← • (δ · · ·) | δ ∈ ∆]
[(q′ · · ·)← ◦ (q′ · · ·) | q′ ∈ Q]

R�→◦•
2 : p (δ x1 · · · xk) z1 · · · zs = • (rhsM2,p,δ) ∀p ∈ P (s+1), δ ∈ ∆(k)

p (� x1) z1 · · · zs = ◦ (p x1 z1 · · · zs) ∀p ∈ P (s+1)

Note that if M1 fulfills one of the restrictions introduced in Definition 3, then
also all the introduced M

left→right
1 fulfill this restriction; analogously for M2.

4.2 Ticking of Original Program

Note that M→�
1 from Definition 4 outputs a �-symbol in every rule application.

If none of these symbols is afterwards duplicated, then the number of �-symbols
in the output produced by M→�

1 is exactly the number of performed call-by-
need reduction steps. This fact is used in the following lemma to determine the
efficiency of the sequential composition of M1 and M2. For the rest of the paper,
we fix some q ∈ Q(r+1), p ∈ P (s+1), t ∈ TΣ , t1, . . . , tr ∈ T∆ and t′1, . . . , t

′
s ∈ TΩ ,

and the substitution κ = [y1, . . . , yr, z1, . . . , zs ← t1, . . . , tr, t
′
1, . . . , t

′
s].

Lemma 2. If M1 is context-linear or basic, and M2 is atmost, then:

cbn(R1∪R2, p (q t t1 · · · tr) t′1 · · · t
′
s)= |nf (⇒R→�

1
∪R�→•

2
, p (q t t1 · · · tr) t′1 · · · t

′
s)|•

Proof. In every application of a rule from R→�
1 (corresponding to an R1-step),

one �-symbol is produced in the intermediate result. There is no other way how
�-symbols can be introduced, and since M→�

1 is (i) context-linear or (ii) basic —
i.e, no �-symbols will appear in context parameters of states from Q in case (ii),
or those parameters cannot be copied in case (i) — none of these �-symbols will
be duplicated. Only those �-symbols are reached and reproduced as •-symbols
by R�→•

2 that correspond to an R1-step being forced by call-by-need reduction
of (p (q t t1 · · · tr) t′1 · · · t

′
s). Since M�→•

2 is recursion-linear, every �-symbol will
be reproduced as •-symbol at most once. Since M �→•

2 is context-linear or basic,
those •-symbols and also the •-symbols produced by M �→•

2 at ∆-symbols —
corresponding to the R2-steps during the call-by-need reduction — will not be
duplicated. Hence, the resulting number of •-symbols is equal to the number of
steps of R1 and R2 in the original program. ut

Example 3. Recall the mtt units M ′
1 and M2 from Example 1, and M ′→�

1 and
M�→•

2 as obtained from them according to Definition 4. Note that M ′
1 is basic

and M2 is atmost, hence the preconditions of Lemma 2 are satisfied. With t =
S Z and t1 = t2 = α, we have, e.g., the following reduction:

p2 (q′ t t1 t2)
⇒R′→�

1
p2 (� (δ (q′ Z t2 (γ t1)) (γ (q′ Z t1 t2)))) (mark step of R′

1)

⇒R�→•

2
• (p2 (δ (q′ Z t2 (γ t1)) (γ (q′ Z t1 t2)))) (count marked step)

⇒R′→�

1
• (p2 (δ (� t2) (γ (q′ Z t1 t2)))) (will not be counted)

⇒R�→•

2
• (• (p1 (γ (q′ Z t1 t2)))) (count step of R2)

⇒R�→•

2
• (• (• (S (p2 (q′ Z t1 t2))))) (count step of R2)

⇒R′→�

1
• (• (• (S (p2 (� t1))))) (mark step of R′

1)

⇒R�→•

2
• (• (• (S (• (p2 t1))))) (count marked step)

⇒R�→•

2
• (• (• (S (• (• Z))))) (count step of R2)

Indeed, we have cbn(R′
1 ∪R2, p2 (q′ t t1 t2)) = | • (• (• (S (• (• Z)))))|• = 5.

Note that a step of R′
1 that is not forced by call-by-need evaluation is not counted

in the final output.

If we refrain from counting the steps of M1 and settle for the approximation of
only counting the steps of M2, we can drop part of the restrictions in Lemma 2:

Lemma 3. If M2 is context-linear or basic, then:

cbn(R1∪R2, p (q t t1 · · · tr) t′1 · · · t
′
s) > |nf (⇒R1∪R→•

2
, p (q t t1 · · · tr) t′1 · · · t

′
s)|•

Proof. Every step of R→•
2 (corresponding to an R2-step) produces one •-symbol.

Since M→•
2 is context-linear or basic, no such symbol is duplicated. Hence, the

number of •-symbols in nf (⇒R1∪R→•

2
, p (q t t1 · · · tr) t′1 · · · t

′
s) is equal to the

number of R2-steps during call-by-need reduction of (p (q t t1 · · · tr) t′1 · · · t
′
s).

Since during this reduction at least one step must be performed by R1, the
inequality follows. ut

4.3 Ticking of Composed Program

Assume that Construction 1 composes M1 and M2 to M1M2 = (F, Σ, Ω, R1R2).
Since M→�

1 or M�→◦
2 is a tdtt unit, Construction 1 is also applicable to these

mtt units, yielding M→�
1 M�→◦

2 = (F, Σ, Ω ∪ {◦(1)}, R→�
1 R�→◦

2).

Example 4. For M→�
1 and M�→◦

2 as obtained from the mtt units in Example 1,
Construction 1 yields the mtt unit M→�

1 M�→◦
2 with set of rules:

qp1 (S x1) y1,p1 y1,p2 = ◦ (S (qp2 x1 (qp2 x1 y1,p1 y1,p2) y1,p1))
qp1 Z y1,p1 y1,p2 = ◦ y1,p1

qp2 (S x1) y1,p1 y1,p2 = ◦ (qp1 x1 (qp2 x1 y1,p1 y1,p2) y1,p1)
qp2 Z y1,p1 y1,p2 = ◦ y1,p2 .

In the previous example, the rules obtained by the composition construction for
M→�

1 and M�→◦
2 correspond to the rules obtained in Example 2 by composing

M1 and M2, except that every right-hand side has an additional ◦-symbol on
top. This is due to the �-symbols on top of all right-hand sides of R→�

1 and due
to the added rules p1 (� x1) = ◦ (p1 x1) and p2 (� x1) = ◦ (p2 x1) in R�→◦

2 . The
following lemma establishes that this observation holds in general.

Lemma 4. For every f ∈ F and σ ∈ Σ: rhs
M→�

1 M�→◦

2 ,f,σ
= ◦ (rhs

M1M2,f,σ
).

Proof. Straightforward by noting that the definitions of Pre and Comp only
depend on Q and P , and that for every q ∈ Q, p ∈ P (s+1) and σ ∈ Σ:

nf (⇒R�→◦

2 ∪Pre∪Comp, p (� (rhsM1,q,σ)) z1 · · · zs)
= nf (⇒R�→◦

2 ∪Pre∪Comp, ◦ (p rhsM1,q,σ z1 · · · zs))
= ◦ (nf (⇒R2∪Pre∪Comp , p rhsM1,q,σ z1 · · · zs)) ut

Hence, M→�
1 M�→◦

2 can be used to approximate the number of reduction steps
of M1M2, as exploited in the proof of the following lemma, which estimates the
efficiency of the composed program without actually performing Construction 1.

Lemma 5. cbn(R1R2 ∪R2, ζq,p[x← t]κ)
<
= |nf(⇒R→?

2
, (nf (⇒R→�

1
∪R�→◦

2
, p (q t y1 · · · yr) z1 · · · zs))κ)|{◦,?}

Proof. By Lemma 4, we know that for every f ∈ F and σ ∈ Σ, the following
holds: rhs

M→�

1 M�→◦

2 ,f,σ
= ◦ (rhs

M1M2,f,σ
). Since all rules simply have an addi-

tional symbol on top, we get the following equivalence:

cbn(R1R2 ∪ R2, ζq,p[x← t]κ) = cbn(R→�
1 R�→◦

2 ∪ R→?
2 , ζq,p[x← t]κ).

During call-by-need reduction of ζq,p[x← t]κ with⇒
R→�

1 R�→◦

2 ∪R→?
2

, every step of

R→�
1 R�→◦

2 , produces a ◦-symbol, while every step of R→?
2 produces a ?-symbol.

Hence, the overall number of steps is <
= |nf (⇒

R→�

1
R�→◦

2
∪R→?

2
, ζq,p[x← t]κ)|{◦,?}.

By confluence considerations, we can obtain the same normal form by first reduc-
ing ζq,p[x ← t] to its normal form with respect to ⇒

R→�

1 R�→◦

2
, then performing

the substitution κ and further reducing to normal form with⇒R→?
2

. This gives us

the equivalent expression |nf(⇒R→?
2

, (nf (⇒
R→�

1 R�→◦

2
, ζq,p[x← t]))κ)|{◦,?} , which

by Lemma 1 from Sect. 3 is equal to:

|nf(⇒R→?
2

, (nf (⇒R→�

1 ∪R�→◦

2
, p (q t y1 · · · yr) z1 · · · zs))κ)|{◦,?} . ut

4.4 Combining Approximations

With Lemmata 2 and 3 we have two different ways to estimate the efficiency of
the original program, while Lemma 5 approximates the efficiency of the com-
posed program. In each case, this is done by annotating the rules of M1 and
M2 appropriately and counting certain symbols in the produced output. In the
following, we will combine these results to determine the relative efficiency of
the composed vs. the original program. Using Lemmata 2 and 5, we obtain the
first of our main theorems:

Theorem 1. If M1 is context-linear or basic, and M2 is atmost, then:

cbn(R1R2 ∪ R2, ζq,p[x← t]κ)− cbn(R1 ∪ R2, p (q t t1 · · · tr) t′1 · · · t
′
s) <

= 0

Proof. By Lemmata 5 and 2, we have:

cbn(R1R2 ∪ R2, ζq,p[x← t]κ)− cbn(R1 ∪ R2, p (q t t1 · · · tr) t′1 · · · t
′
s)

<
= |χ|{◦,?} − |nf (⇒R→�

1
∪R�→•

2
, p (q t t1 · · · tr) t′1 · · · t

′
s)|• ,

where χ = nf(⇒R→?
2

, (nf (⇒R→�

1
∪R�→◦

2
, p (q t y1 · · · yr) z1 · · · zs))κ) .

It is clear that: |nf (⇒R→�

1 ∪R�→•

2
, p (q t t1 · · · tr) t′1 · · · t

′
s)|•

= |nf(⇒R�→•

2
, (nf (⇒R→�

1 ∪R�→•

2
, p (q t y1 · · · yr) z1 · · · zs))κ)|•.

Since we have t1, . . . , tr ∈ T∆, the outer reduction with ⇒R�→•

2
will only ap-

ply rules at symbols from ∆. Hence, the previous expression is equivalent to
|χ′|{•,?}, where χ′ = nf(⇒R→?

2
, (nf (⇒R→�

1 ∪R�→•

2
, p (q t y1 · · · yr) z1 · · · zs))κ) .

By comparing the definitions of R�→•
2 and R�→◦

2 , it should be obvious that
|χ|{◦,?} − |χ

′|{•,?} = |χ|◦ − |χ′|• <
= 0. ut

Note that by further considering the value of |χ|◦ − |χ′|• in the previous proof,
we could obtain the more precise statement that under the preconditions of
Theorem 1 the composed program saves at least as many reduction steps as
were performed in the original program by states of M2 on the part of the
intermediate result produced by rules of M1.

Also, note that Theorem 1 generalizes the efficiency statements about the
composed program compared to the original program in Corollary 21 and The-
orem 23 of [8], where M1 and M2 were required to be linear, and where in the
case that M1 is not a tdtt unit M2 was restricted to have only one state.

In order to relax the a priori restrictions imposed by Theorem 1 on the
involved mtt units, we can use Lemma 3 (instead of Lemma 2) as starting point:

Lemma 6. If M2 is context-linear or basic, then for every λ ∈ {0, 1}:

cbn(R1R2 ∪ R2, ζq,p[x← t]κ)− cbn(R1 ∪ R2, p (q t t1 · · · tr) t′1 · · · t
′
s)

< λ + |χ|◦ − |χ|• ,

where χ = nf (⇒R◦•→◦•

2
, p (nf (⇒

R
→◦•,λ

1
, q t t1 · · · tr)) t′1 · · · t

′
s).

Proof. By Lemmata 5 and 3, we have:

cbn(R1R2 ∪ R2, ζq,p[x← t]κ)− cbn(R1 ∪ R2, p (q t t1 · · · tr) t′1 · · · t
′
s)

< |χ1|{◦,?} − |nf (⇒R1∪R→•

2
, p (q t t1 · · · tr) t′1 · · · t

′
s)|• ,

where χ1 = nf(⇒R→?
2

, (nf (⇒R→�

1 ∪R�→◦

2
, p (q t y1 · · · yr) z1 · · · zs))κ) .

Replacing R�→◦
2 by R�→◦•

2 in the expression defining χ1 does not change the

number of occurrences of ◦ and ?, because only additional •-symbols will appear
in the output, hence |χ1|{◦,?} = |χ2|{◦,?}, where

χ2 = nf(⇒R→?
2

, (nf (⇒R→�

1 ∪R�→◦•

2
, p (q t y1 · · · yr) z1 · · · zs))κ) .

Also, it is clear that:

|nf (⇒R1∪R→•

2
, p (q t t1 · · · tr) t′1 · · · t

′
s)|•

= |nf (⇒R→�

1 ∪R�→◦•

2
, p (q t t1 · · · tr) t′1 · · · t

′
s)|•

= |nf(⇒R�→◦•

2
, (nf (⇒R→�

1 ∪R�→◦•

2
, p (q t y1 · · · yr) z1 · · · zs))κ)|• .

Since we have t1, . . . , tr ∈ T∆, the outer reduction with ⇒R�→◦•

2
will only apply

rules at symbols from ∆, producing •-symbols. Hence, the previous expression
is equivalent to |χ2|{•,?}, and thus the right-hand side of the above inequality is
equal to |χ2|{◦,?} − |χ2|{•,?}, respectively to |χ3|◦ − |χ3|•, where

χ3 = nf(⇒R2 , (nf (⇒R�→◦•

2
, p (nf (⇒R→�

1
, q t y1 · · · yr)) z1 · · · zs))κ) .

The rules from R�→◦•
2 replace every �-symbol by one ◦-symbol, and produce a

•-symbol for every consumed symbol from the intermediate ranked alphabet ∆.
The same effect can be achieved by firstly directly producing ◦-symbols instead
of �-symbols, and secondly marking every produced intermediate symbol from
∆ with a •-symbol and then just reproducing those. Hence, χ3 is equal to:

nf(⇒R2 , (nf (⇒R◦•→◦•

2
, p (nf (⇒

R
→◦•,0
1

, q t y1 · · · yr)) z1 · · · zs))κ) .

Since, furthermore, the t1, . . . , tr ∈ T∆ do not contain ◦- or •-symbols, and the
rules of R2 are contained in R◦•→◦•

2 , the previous expression is by confluence
considerations equal to:

χ4 = nf (⇒R◦•→◦•

2
, p (nf (⇒

R
→◦•,0
1

, q t t1 · · · tr)) t′1 · · · t
′
s).

In nf (⇒R
→◦•,0
1

, q t t1 · · · tr), the rules from R
→◦•,0
1 produce one ◦-symbol when-

ever a state is applied at some input symbol. Alternatively, we could produce
one ◦-symbol atop every state call. Hence, χ4 is also equal to:

χ5 = nf (⇒R◦•→◦•

2
, p (nf (⇒R

→◦•,1
1

, ◦ (q t t1 · · · tr))) t′1 · · · t
′
s).

In the case λ = 0, the lemma now follows from |χ4|◦ − |χ4|• = 0 + |χ|◦ − |χ|•,
while in the case λ = 1, the lemma follows from |χ5|◦ − |χ5|• = 1 + |χ|◦ − |χ|•
(by normal form and definition of | · |◦). ut

Lemma 6 is promising, because it estimates the efficiency improvement or de-
terioration of the composed program over the original one, without the need of
actually performing the composition construction. But, in contrast to the above
Theorem 1, the approximation is still input-dependent, while we would like to
obtain a statement about all runs of the original and the composed program.

Since we are interested in the difference in the number of occurrences of ◦-
and •-symbols, we can manipulate the right-hand sides of R

→◦•,λ
1 , as long as

we do not decrease the value of |χ|◦ − |χ|• in Lemma 6. A trivial way to do
this is by removing • (◦ · · ·)- and ◦ (• · · ·)-contexts, because the rules in R◦•→◦•

2

would just reproduce those. If ◦- and •-symbols do not occur together, certain
conditions have to be fulfilled to allow “bringing them closer” without decreasing
the overall value of |χ|◦ − |χ|•. Such conditions are established in the following
definition and lemma, and are then used to prove our second main theorem.

Definition 5. The rewrite system Elim contains the following rewrite rules
(with variables u, u1, u2, . . .):

1. • (◦ u) = u
2. ◦ (• u) = u
3. if M2 is atmost, then for every δ ∈ ∆(n) and i ∈ [n]:
• (δ u1 · · · un) = (δ u1 · · · (• ui) · · · un)

4. if M2 is atleast, then for every δ ∈ ∆(n) and i ∈ [n]:
(δ u1 · · · (• ui) · · · un) = • (δ u1 · · · un)

5. if M1 is context-nondeleting and M2 is atleast, then for every q′ ∈ Q(n+1)

and i ∈ [n]: (q′ u u1 · · · (• ui) · · · un) = • (q′ u u1 · · · un)

Lemma 7. Let M = (Q, Σ, ∆∪{◦(1), •(1)}, R) be an mtt unit, where Q, Σ and ∆

are the ranked alphabets of M1 (and R will typically contain annotated versions of
the rules from M1, which however is not a technical precondition of this lemma).
Assume that M is context-nondeleting, if M1 is context-nondeleting.
If we rewrite one right-hand side in R with one rewrite step of Elim, yielding an
mtt unit M ′ with set of rules R′, then |χ|◦ − |χ|• <

= |χ
′|◦ − |χ

′|•, where:

χ = nf (⇒R◦•→◦•

2
, p (nf (⇒R, q t t1 · · · tr)) t′1 · · · t

′
s)

χ′ = nf (⇒R◦•→◦•

2
, p (nf (⇒R′ , q t t1 · · · tr)) t′1 · · · t

′
s) .

Proof sketch. The lemma can be proved by structural induction on t ∈ TΣ , using
a nested induction on the structures of right-hand sides from R and R◦•→◦•

2 ,
respectively, and using — for every p′ ∈ P (s′+1), n ∈ IN, i ∈ [n], τ, τ1, . . . , τn ∈
T∆∪{◦(1),•(1)}, t′ ∈ TΣ, and δ ∈ ∆(n) or q′ ∈ Q(n+1) — one of the following
properties (depending on the rule from Elim that was applied):

1. |χ1|◦ − |χ1|• <
= |χ

′
1|◦ − |χ

′
1|•

2. |χ2|◦ − |χ2|• <
= |χ

′
2|◦ − |χ

′
2|•

3. |χ3|◦ − |χ3|• <
= |χ

′
3|◦ − |χ

′
3|•, if M2 is atmost

4. |χ4|◦ − |χ4|• <
= |χ

′
4|◦ − |χ

′
4|•, if M2 is atleast

5. |χ5|◦ − |χ5|• <
= |χ

′
5|◦ − |χ

′
5|•, if M1 is context-nondeleting and M2 is atleast,

where: χ1 = nf (⇒R◦•→◦•

2
, p′ (• (◦ τ)) z1 · · · zs′)

χ2 = nf (⇒R◦•→◦•

2
, p′ (◦ (• τ)) z1 · · · zs′)

χ′
1 = χ′

2 = nf (⇒R◦•→◦•

2
, p′ τ z1 · · · zs′)

χ3 = χ′
4 = nf (⇒R◦•→◦•

2
, p′ (• (δ τ1 · · · τn)) z1 · · · zs′)

χ′
3 = χ4 = nf (⇒R◦•→◦•

2
, p′ (δ τ1 · · · (• τi) · · · τn) z1 · · · zs′)

χ5 = nf (⇒R◦•→◦•

2
, p′ (nf (⇒R, q′ t′ τ1 · · · (• τi) · · · τn)) z1 · · · zs′)

χ′
5 = nf (⇒R◦•→◦•

2
, p′ (nf (⇒R, • (q′ t′ τ1 · · · τn))) z1 · · · zs′) .

Properties 1 and 2 are immediate from χ1 = • (◦ χ′
1) and χ2 = ◦ (• χ′

2). For
j ∈ {3, 4, 5} it can easily be seen that |χj |◦ = |χ′

j |◦. Hence, to validate properties
3–5, it remains to prove that under the appropriate restrictions: |χ′

3|• <
= |χ3|•,

|χ′
4|• <

= |χ4|•, respectively, |χ′
5|• <

= |χ5|•. These inequations can be established
by using the rule p′ (• x1) z1 · · · zs′ = • (p′ x1 z1 · · · zs′) in R◦•→◦•

2 , and the fol-
lowing two facts2:
2 For property 5 we additionally use the observation that for context-nondeleting M ,

nf (⇒R, q′ t′ τ1 · · · τn) is obtained from nf (⇒R, q′ t′ τ1 · · · (• τi) · · · τn) by removing
at least one •-symbol.

Fact 1: if M2 is atmost, τ ′ ∈ T∆∪{◦(1) ,•(1)}, and τ ′′ is obtained by inserting at
most one •-symbol into τ ′, then:
|nf (⇒R◦•→◦•

2
, p′ τ ′′ z1 · · · zs′)|• <

= 1 + |nf (⇒R◦•→◦•

2
, p′ τ ′ z1 · · · zs′)|•.

Fact 2: if M2 is atleast, τ ′ ∈ T∆∪{◦(1),•(1)}, and τ ′′ is obtained by removing at
least one •-symbol from τ ′, then:
1 + |nf (⇒R◦•→◦•

2
, p′ τ ′′ z1 · · · zs′)|• <

= |nf (⇒R◦•→◦•

2
, p′ τ ′ z1 · · · zs′)|•. ut

Theorem 2. If M2 is context-linear or basic, and there exists λ ∈ {0, 1}, such

that the rules of R
→◦•,λ
1 can be rewritten with (finitely many applications of)

Elim until no ◦-symbols remain, then:

cbn(R1R2 ∪ R2, ζq,p[x← t]κ)− cbn(R1 ∪ R2, p (q t t1 · · · tr) t′1 · · · t
′
s) < λ

Proof. By the preconditions we know that R
→◦•,λ
1 can be rewritten with Elim

to some R∗ containing no ◦-symbols. By Lemma 6 and repeated applications of
Lemma 7, we then have:

cbn(R1R2 ∪ R2, ζq,p[x← t]κ)− cbn(R1 ∪ R2, p (q t t1 · · · tr) t′1 · · · t
′
s)

< λ + |χ′|◦ − |χ′|• ,

where χ′ = nf (⇒R◦•→◦•

2
, p (nf (⇒R∗ , q t t1 · · · tr)) t′1 · · · t

′
s). Since R∗ produces

no ◦-symbols, no such symbols can occur in χ′, i.e. |χ′|◦ = 0. Hence, the theorem
follows from |χ′|• ∈ IN. Actually, we could obtain a more precise statement by
further considering the value of |χ′|•. ut

Note that since Theorem 2 is based on the approximation from Lemma 3, which
disregarded the steps performed by M1 in the original program, we actually
obtain that the composed program performs at most as many reduction steps
as were performed in the original program by states of M2, plus λ.

4.5 Application

In Theorems 1 and 2 we have given criteria under which the composed program
obtained from Construction 1 is at least as efficient as the original program.
Note that these sufficient conditions for non-deterioration can be checked on the
original program, hence an optimizing compiler will perform the composition
construction only if it has ensured beforehand that this is indeed beneficial.

As an example, consider e = (div (exp t Z)) from the introduction. Since the
mtt unit defining exp is context-linear and the tdtt unit defining div and div ′ is
atmost, Theorem 1 is sufficient to automatically decide that a replacement of e

by e′ is safe with respect to efficiency (for every possible input t).
Note that also Theorem 2 is constructive, in the sense that we can algo-

rithmically decide, whether there exists an λ ∈ {0, 1} such that the rules of a

given R
→◦•,λ
1 can be rewritten with Elim until no ◦-symbols remain, because

the right-hand sides of mtt rules are finite trees and none of the rewrite rules in
Elim introduces new symbols.

Example 5. Recall the mtt units M1 and M2 from Example 1 (composed in Ex-
ample 2). Since M2 is context-linear, Theorem 2 is applicable as follows. Consider

the rules in R1
→◦•,1 (i.e., λ = 1):

q (S x1) y1 = • (γ (◦ (q x1 (• (δ (◦ (q x1 y1)) y1)))))
q Z y1 = y1

Since M2 is atmost, Elim contains the rewrite rules of points 1–3 in Definition 5
from the previous subsection. Hence, we can rewrite as follows:

rhsM1
→◦•,1,q,S ⇒Elim(3) γ (• (◦ (q x1 (• (δ (◦ (q x1 y1)) y1)))))

⇒Elim(1) γ (q x1 (• (δ (◦ (q x1 y1)) y1)))⇒Elim(3) γ (q x1 (δ (• (◦ (q x1 y1))) y1))

⇒Elim(1) γ (q x1 (δ (q x1 y1) y1)) .

From Theorem 2 it now follows that for every t ∈ TΣ and t1 ∈ T∆:

cbn(R1R2 ∪ R2, qp1 t (p1 t1) (p2 t1))− cbn(R1 ∪ R2, p1 (q t t1)) < 1

cbn(R1R2 ∪ R2, qp2 t (p1 t1) (p2 t1))− cbn(R1 ∪ R2, p2 (q t t1)) < 1 .

4.6 Results about Classical Deforestation

Kühnemann [8] compares tree transducer composition with classical deforesta-
tion [13]. From his Lemma 20 follows that if M1 is a tdtt unit, then our com-
position construction essentially yields the same result as classical deforestation
with implicit let-expressions. Hence, Theorems 1 and 2 can be used to establish
conditions under which classical deforestation for lazy languages is guaranteed
to improve efficiency even for nonlinear programs:

Corollary 1. In the following cases, classical deforestation leads to a program
at least as efficient as the original program3:

1. M1 is a tdtt unit and M2 is an atmost mtt unit.
2. M1 is a tdtt unit, every rule of which has a right-hand side of the form (δ · · ·)

for some δ ∈ ∆, and M2 is a context-linear or basic mtt unit.

Proof. The proposition for case 1 follows from Theorem 1. In case 2 the propo-
sition follows from Theorem 2 with λ = 0, applying the Elim-rule 2 from Defi-
nition 5. ut

5 Future Work

The presented efficiency analysis gives sufficient conditions for when call-by-
need reduction of the composed program to normal form does not need more
steps than for the original expression, independent from the input. In lazy func-
tional programs, however, such expressions might also occur in a context where
their reduction to normal form is not necessary. Hence, the analysis should be
made context-independent. We conjecture that the efficiency statement from
Theorem 1 remains valid also for partial call-by-need reductions, as does the
statement of Theorem 2, if the Elim-rules under points 4 and 5 of Definition 5
are abandoned.

3 By the remarks below the proofs of Theorems 1 and 2, we can even show that the
resulting program performs strictly fewer reduction steps than the original program.

Voigtländer and Kühnemann [12] presented a new composition technique
that generalizes the transformation considered here, by handling also cases where
both involved mtt units use accumulating parameters. Our formal efficiency anal-
ysis method is also applicable to the extended transformation and then success-
fully classifies all examples from [7,8,9,12], but due to space constraints we could
not elaborate on this more general setting in the present paper.

Acknowledgment

I would like to thank Armin Kühnemann and the anonymous referees for helpful
comments and suggestions.

References

1. R.M. Burstall and J. Darlington. A transformation system for developing recursive
programs. J. ACM, 24:44–67, 1977.

2. W.N. Chin. Safe fusion of functional expressions II: Further improvements. J.
Funct. Prog., 4:515–555, 1994.

3. N. Dershowitz and J.P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 6, pages 243–320.
Elsevier Science Publishers B.V., 1990.

4. J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. Syst. Sci., 31:71–
145, 1985.

5. Z. Fülöp and H. Vogler. Syntax-Directed Semantics—Formal Models Based on Tree
Transducers. Monographs in Theoretical Computer Science. Springer-Verlag, 1998.

6. M. Höff. Vergleich von Verfahren zur Elimination von Zwischenergebnissen bei
funktionalen Programmen. Master thesis, Dresden University of Technology, 1999.

7. A. Kühnemann. Benefits of tree transducers for optimizing functional programs.
In Foundations of Software Technology & Theoretical Computer Science, Chennai,
India, Proceedings, volume 1530 of LNCS, pages 146–157. Springer-Verlag, 1998.

8. A. Kühnemann. Comparison of deforestation techniques for functional programs
and for tree transducers. In Functional and Logic Programming, Tsukuba, Japan,
Proceedings, volume 1722 of LNCS, pages 114–130. Springer-Verlag, 1999.

9. A. Kühnemann and J. Voigtländer. Tree transducer composition as deforestation
method for functional programs. Technical Report TUD-FI01-07, Dresden Univer-
sity of Technology, 2001.

10. M. Rosendahl. Automatic complexity analysis. In Functional Programming Lan-
guages and Computer Architecture, London, England, Proceedings, pages 144–156.
ACM Press, 1989.

11. D. Sands. Total correctness by local improvement in the transformation of func-
tional programs. ACM Trans. on Prog. Lang. and Systems, 18:175–234, 1996.

12. J. Voigtländer and A. Kühnemann. Composition of functions with accumulating
parameters. Technical Report TUD-FI01-08, Dresden University of Technology,
2001. http://wwwtcs.inf.tu-dresden.de/˜voigt/TUD-FI01-08.ps.gz .

13. P. Wadler. Deforestation: Transforming programs to eliminate trees. Theoret. Com-
put. Sci., 73:231–248, 1990.

14. C.P. Wadsworth. Semantics and Pragmatics of the Lambda Calculus. PhD thesis,
Oxford University, 1971.

http://wwwtcs.inf.tu-dresden.de/~voigt/TUD-FI01-08.ps.gz

	Conditions for Efficiency Improvement by Tree Transducer Composition
	Janis Voigtländer

