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Abstract

In this appendix to the article “Composition of functions with accumulating parameters”
we prove Theorem 5.2 of that paper, showing that Construction 5.1 produces an mtt
that is equivalent to the composition of the two given ones. Firstly, we will formalise the
idea of “walking upwards” in the intermediate result to obtain the context parameters of
calls of the second mtt’s states on the context parameters of the first mtt, as presented
in Subsection 4.6. To that purpose, we introduce functions that—as we will prove—give
answers to the question Q in Subsection 4.5. We will introduce some auxiliary notions, in
particular an ordering relation that will be useful to prove the “cutting” of potential cycles
mentioned in Subsection 4.10. We present some properties of the mentioned functions and
relations, and prepare the main proof by establishing some necessary technical lemmata.

In the following, let M; and Ms be two fixed mtts as in Construction 5.1. We will
also use the notations and names introduced there. For technical reasons, we assume
without loss of generality that there are no name conflicts between M; and M, i.e.,
all involved ranked alphabets are pairwise disjoint. This can always be achieved by
renaming and guarantees, e.g., that rewrite rules of M; and M> can be applied in
arbitrary order (= g,ur, is confluent).

As noted below Theorem 5.2, we could generalise the weakly single-use property
in Definition 3.6 by dropping condition (ii) and requiring condition (i) only for
states ¢ that do have context parameters, without requiring any change to Con-
struction 5.1. In fact, the proofs in this appendix will from Definition 3.6 only use
condition (i) and this only for states of Ms with rank greater than one. Also, the
non-copying restriction of M; and the weakly single-use restriction of M5 will not be
needed if one of the two is a tdtt. Thus, our correctness proof for Construction 5.1
also incorporates proofs for the known results TOP; MAC C MAC (Engelfriet,
1981) and MAC;TOP C MAC (Engelfriet & Vogler, 1985).

Firstly, we introduce functions that can be used to answer question Q from
Subsection 4.5.

+ This author was supported by the DFG under grant KU 1290/2-1.
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Definition A.1 (paty,- and patry , .., )-functions)
The functions in the set:

{pary, : {(k,g,0) | k€ [r],g € GOV 1€ [s]} — RHS(G,Q,Y;, Za)
| fe FOtD t e Ty}
ULy (1,0 {(m2 9 1) | 7 € paths (), lab(¢, 7) ¢ Up,g' € G, 1 € [¢']}
— RHS(G,Q,Y,, Zg)
| (r+1) € rank(F),r >0,p e N,¢p € RHS(F,A,U,,Y.), t1,...,tp € Tx}

are defined by mutual recursion as follows.

For every f € FUtY g e GEHD ke [r], 1 € [s], 0 € @ and ty,...,t, € Ts:
if rhsy, does not contain the context variable yy, then

Wf,l?(tl,...,tp)(kaga 1) = nil ;
otherwise

Wf,o‘(tl,...,tp)(k7 9, l) = thsfya,(tl,...,tp)(ﬂymga l) s
where m, € paths(rhsy,) is the unique path with lab(rhsf ., m,) = yr (notice
that M; is non-copying).
For every (r 4+ 1) € rank(F) with r > 0, p € N, ¢ € RHS(F,A,U,,Y,) and
t1,...,tp € Ty, the function pary 4, . is defined by induction on the prefix-

order of paths in ¢. For every ¢’ € GtV and [ € [/]:

hd W¢,(t1,...,tp)(€7g/5 l) = Zg'\l
e For every j € Ny and 7j € paths(¢) with lab(¢,7j) ¢ U,, the definition is
by case distinction on lab(¢, 7) as follows:
lab(¢,7) = & for some § € A and j € [q]:
If, with ¢” € G6"+1 and ¢1,...,¢s € RHS(G,Q,V,, Zs), the only oc-
currence of a g’(vj,...)-call in the d-rules of the weakly single-use mtt M,
looks as follows:

g”(a(’Ul,...,’Uq),Zl,...,ZS//) - -.-gl(Uj,1/)1,---,¢s/)... )
then:
W¢,(t1,...,tp)(7rjvg/al)

=nf(=r,, Yi[va — nf(=g,,sub(¢, 7d)[u. « t.,c € [p]]),d € [q],
Zm — W¢,(t1,...,tp)(7779//a m),m € [s"]]).

If no such call exists in the d-rules of Ma, then pary , ., )(7j,¢',1) = nil.
lab(¢, ) = f for some f € FtD 1< j—1<qandlab(¢,71) = u; € Up:

Wd),(th...,tp)(ﬂ—j? q',1)

= nf(:>327Wf7ti (] -1,9, l)
lyo < nf(=r.,sub(d,m(b+1))[uc —tc,c € [pl]),b € [q],
Zgt m W(p,(tl’m,tp)(?r,g”,m), g€ GE"HY ;e [s"). ©
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Note that the terms produced by pary,- and pary, ;, . ¢,)-functions, respectively,
are always = g,-normal forms. Also, note the similarities between the definitions of
pary ,-functions and right-hand sides for (ky,[,)-states, and between the definitions
of Pary (4, ...+,)- and pary-functions, respectively. These correspondences will be
made precise in the statements Ib and IIb of Lemma A.15.

Ezample A.2 (pary - and pary ., )-functions)

t1,0e0y
We refer to the mtts M; and My from Example 4.2 and compute as follows:

pary, ap(e)) (1, 92,1)
= (by definition of pary, 4(p(g)), with rhsf a = a(fi(u1,y1)))
PaTo(fy (ur ) (B(E)) (125 92, 1)
= (by definition of Wa(ﬁ(uhyl)),(B(E)))
nf(=r,, P07y, gyl g2, Dy — nf(=r,, y1[u1 < B(E)]),
291,14 PO (g, (ur ) (B(E) (1 91, 1),
Zga,1 < DATo(f, (ur ), (B(E)) (192, 1)])
= (by definition of pary, gy, with rhsf, g = fi(u1,8(y1)))
1 (5 Ras POTH, (uy 5(1)),(B) (21 92, D 290,1 = P4, (s 1)), (B(E)) (L1 915 1)
2921 POTo(fy (ur,y0)),(B(E)) (1; 92, 1))
= (by definition of Dary, ., (), (E)>
with ga(B(v1), 21) — ga(v1,w(g1(v1, 21), 21)) € R2)
nf(= Ry, nf (5 Ry w(g1(v1, 21), 21)[V1 < nf (SR, y1lur — E]),
21— PATf, (uy B(y1)),(B) (2, 92, 1)])
(291,15 2921 = PAT (4, (ur 91)),(B(E)) (1 915 1) PO (1, (ur o)), (B () (15 92, D)
= (since nf(=g,,y1[u1 < E]) = y1 and by definition of pary, ., s(y.)),(&))
nf(= Ry, nf (= Ry, w(91(y1,21), 21)
(21 <= nf(=r,, DTy, p(1,92,)[y1  — nf(=r,,By1)[ur — E]),
Zg11 = PATH, (uy B(y)),(B) (€5 915 1),
Zg5,1 = DAY, (uy 5(1)),(B) (€5 92, D]])
(291,15 2021 = PO, (un ) (B(E) (15 915 1) PO 4,y ) (B2 (1 92, 1)])
= (by definition of Pary, ., (y.)).(E))
nf(= Ry, nf(= Ry, w(91(y1,21), 21)[21 — nf(=Rr,, D@y, (1,92, 1)[y1 < B(y1)])])
(291,15 2921 = PAT a1, (ur,91)),(B(2)) (1 915 1) PO (1, (ur ), (B () (15 92, D)
= (by definition of pary, g, with rhsg, g = y1)
nf(= Ry nf (= Ry, w(91(Y1, 21), 21)[21 < nf (= Ry, PAT, (€, 92, Dy1 < By1)])])
(291,15 92,1 = PO, (900, (B(E) (1 915 1) PO (£, (s )y, (B () (1, 925 1))
= (by definition of pary, )
nf(= Ry, nf (= Ry w(91(y1,21), 21)[21 < nf (= Ry 2g5,1[Y1 — B(y1)])])
(291,15 2921 = PAT (4, (ur 1)), (B(E)) (1 915 1) PO (1, (ur o)), (B () (1 92, D)
= (Since nf(:>R2v 292,1[3/1 — ﬁ(yl)]) = 392,1)
Nf(= Ry (91 (Y15 2g2,1)s 202,1) [201,1 — PO 1, (ur 1)), (B(E)) (L 915 1),
2921 POTo(fy (ur,y0)),(B(E)) (1, 92, 1)])
= (by definition of Par, s, (u, 41)),(B(E)):
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with g1(a(v1),21) — g1(v1,92(v1,21)) € Ra)
nf(= Ry w(91(Y1, 2g2,1) 2g2,1)
(22,1 < nf (= Rys 21[01 — nf (=R, fi(u, y1)[ur — B(E))),
21— POTo( gy (ury0)), (B(E) (€ 915 D))
= (by definition of Wa(fl(ul’yl))’(B(E)))
nf(= Ry w(91(Y1, 22,1) 2g2,1)
(2951 < nf(= R, z1[v1 < nf(=r,, fi(ur,y1)[ur — B(E))),
21— 2g,,1])])
= (since nf(=r,, 21[v1, 21 < nf(= gy, fi(ur, y1)[ur « B(E)]), 2,,1]) = 2g,,1)
w(g1(y1, 2g1,1)5 2g1,1)-

In Example A.5 we will establish how this result corresponds to the twofold under-
lined subtree in Example 4.2. <&

In order to describe the context parameters with which states of Ms reach certain
paths in a tree, we need the notion of marking a tree. Therefor, we define a function
mark on arbitrary trees, which adds to every occurrence of a symbol as a superscript
its path in the tree. For example, we have

mark(3(f(u,y),0(a, a))) = 6°(f1 (u'!,y'?),8%(a*!, a*?)).

All operations on marked trees work in principle like on ordinary trees. Markings
are ignored, e.g., in matching a tree against the left-hand side of a rewrite rule,
but markings are preserved by, e.g., rewriting, substitutions or the sub-function.
If there is, e.g., a rule g(d(v1,v2)) — Y(g(v2)), then this induces the rewrite step
(6 (fr(utt, y'2),5%(a?t, a??))) = v(g(6%(a?t,a??))). We will use the placeholder
o™ for an arbitrary tree that has a root symbol marked with 7.

Lemma A.3 (reachability of marked subtrees)

For every p € N, t1,...,t, € Te, r € N, ¢ € RHS(F,A,U,,Y;), g € G&+Y,
g € G j e Ny and 7j € paths(): if a call of the form g(e™, py,...,0s)
occurs during a reduction of ¢’ (mark(¢)[uc < tc,c € [pl], z1, ..., zs) With =g, UR,,
then there exist ¢” € GG+ and &, 11, ...,y such that

g (mark(¢)[uc — te,c € [pll, 21, 2s) =h,uR, &>
& contains a subtree
9" (sub(mark(¢), m)[uc < te,c € [pl],m1,- .-, ns»)

and from this call of ¢" on sub(mark(¢), 7)[ue < te, ¢ € [p]] results—by reduction—
the g(e™, o1,..., 0s)-call.

Proof
If a call of the form g(e™, g1, ..., 0s) occurs during a reduction of

g (mark(g)[uc < te,c € [pl], 21, .-, 2s7)

with =g, UR,, then during this reduction a call of some g € GGE"+D) with some
context parameters 71, ...,ns on a tree ¢ with a root symbol marked with 7 must
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Fig. A 1. If i reduces to ii, then iii exists such that a reduction of iv contains a v.

have occurred beforehand, from which the g(e™, g1,..., 0s) results. This situation
is shown in the first row of Fig. A 1.

The tree ¢ can only be obtained from the subtree of ¢[u. < t.,c € [p]] at path 7
by =-g,-reduction steps. By shifting these steps to the end of the first reduction
in the first row of Fig. A1, we obtain the detour reduction via £ also shown in
the figure. Hence, the subtree g” (sub(mark($), )[ue < te,c € [P]], M1, ns) Of &
reduces to g”(C, 71, ..., ns) by =%, and from this results—by further reduction—
the g(e™, 01,...,0s)-call. [

We will use the following principle of proof by simultaneous induction (Engelfriet
& Vogler, 1985; Kithnemann & Vogler, 1994; Fiilop & Vogler, 1998).

Proof principle
Let X be a ranked alphabet. Let I and IT be statements, where I has a free variable
t € Ty, and II has free variables p € N and t¢1,...,t, € Tx. If

I < II: for every p € N and ty,...,t, € T such that II holds, we can prove for
every o € X(®) that I holds for t = o (4, ... ,tp), and

II &« 1: for every p € N and t1,...,t, € Tx such that I holds for each of the
ti,...,tp, we can prove that II holds,

then we have proven that I holds for every ¢t € Tx;, and that IT holds for every p € N
and t1,...,1p € Ts. <

In the proofs we will frequently use “reordering of normal form computations and /or
of substitutions” to justify the manipulation of expressions. Each of these intuitive
steps could be proven by induction of a much lower complexity than the overall
proof structure. Since these inductions nevertheless would blow up this appendix
considerably, we omit them.



6 J. Voigtlander and A. Kihnemann

The following theorem establishes the key property of the functions introduced
in Definition A.1.

Theorem A.4 (pary ,-functions answer question Q)

Forevery t € Ty, f € FUt1) g e G o € G+ k€ [r] and [ € [s]: if a call of
the form g(yx, 01, - . ., 0s) occurs during a reduction of ¢’ (f(t,y1,. .-, Yr), 21, -+, Zs’)
with = g,ur,, then pary ,(k, g,1) € RHS(G,Q, Y, {291, .., 24 s}) and
nf(=gr,UR,s 01) = Wf)t(k,g, Dzgri, . 2g,sr < 2150, 2]

Proof

We prove the following two statements by simultaneous induction, where state-
ment I is exactly the same as the statement of the theorem.

I. For every t € Tx:
For every f € FUt1) g e GG o/ € G+ ke [r] and | € [s]: if a call of the
form g(yg, 01, - -, 0s) occurs during a reduction of ¢'(f (¢, Y1, .-, Yr)s 21, - -+, Zs')
with = R1URs» then:

Wﬁt(k,% 1) e RHS(G,Q, Yy, {2g1,..., 24 +}) and

nf(=R,UR» 01) = PaT; (K, g, D)[2g0 1,5 290,60 = 2150005 21].
II. For every p € N,tq,...,t, € Tx:
For every (r 4+ 1) € rank(F) with r > 0, ¢ € RHS(F,A,U,,Y,), © € paths(¢)
such that lab(¢,7) ¢ U,, g € Gt ¢/ € G+ and [ € [s]: if a call of
the form g(e™, 01,. .., 0s) occurs during a reduction of g'(mark(¢)[uc «— te,c €
[pl], 21, - -, 2s) With =g, UR,, then:

W(b,(tl’m,tp)(ﬂ,g, 1) e RHS(G, Y, {2g1,...,2¢ ,}) and

nf(:>RIURQ, Ql) = Wd),(th...,tp)(ﬂ—?g? l)[Zglyl, ceey Bglisl T 21y ey ZSI].

I <1II: Let t =0(t1,...,tp) for some o € »(®) and t1,...,tp € Tx.
If a call g(yk, 01,- .-, 0s) occurs during a reduction of

g/(f(g(tla e 7tp)7y17 e 7yT)JZI7 cee 728’)
with = g,UR,, then it must occur during a reduction of
g (rhspoluc — te,c € [pl], 21, - -, 207).

This is only possible if there is a—unique, by the non-copying property of M;—
path 7 in paths(rhsyf ) with lab(rhsf s, ) = yi. Consequently, the o1,...,0s
appear in an occurrence g(yx™, 01, - . ., 0s), resulting from a reduction of

g (mark(rhsgo)uec < te,c € [pl], 21, ..., 25).
By induction hypothesis IT this means that
thng,(th...,t,})(Wagv 1) e RHS(G, Y, {291,...,2¢ ,}) and

nf(:>R1UR27 Ql) = thsf’a7(t1,,,,7tp)(7raga l)[zg’717 ceeyRgls! ST Ry ey ZS’] )

which by pary ., ..+,)(k, 9, 1) = PaTyps,  (t1,....t,) (T, 9, 1) is exactly what we had
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to prove.

IT <= I : For fixed r and ¢, we prove the claim by induction on the prefix-order of
paths in ¢:

e In the base case ¢, we have a call of the form g(e¢,p1,...,0s) during re-
duction of ¢'(mark(d)[uc — te,c € [p]],21,...,2s). This is only possible
if g = ¢ and p1,...,0 = 21,...,2s, in which case we have by Defini-
tion AL pary, 4, . 4)(6,9,1) = 290 € RHS(G,Q,Y:, {2g1,...,2¢,}) and
nf(=Rr,UR,, 01) = 21 = W¢7(t1’.,'7tp)(€,g7 Dzg/s-- o 2g,sr < 21505 2]

e In the inductive case mj € paths(¢)—with © € paths(p), j € Nt and
lab(¢,7j) ¢ U,—we have a call of the form g(e™/, p1,...,0s) during reduc-
tion of ¢'(mark(¢)[uc — tc,c € [p]],21,...,2s). By Lemma A.3 there exist
¢” € GE"* and ny,..., 1y such that reducing

g (mark(9)[uc < te,c € [pl], 21, .-, 2s7)

leads to an occurrence of

g" (sub(mark(g), ) [uc < te,c € [Pl M1y - -y Msr)

and from this call of ¢” on sub(mark(¢),m)[u. «— t.,c € [p]] results—by
reduction—a call of the form g(e™ p1,..., 0s).

By applying the induction hypothesis for m we know that for every m € [s"],
we have

Wcﬁ,(tl,...,tp) (71'7 g”, m) S RHS(G, Q7 Yr, {29/71, ey Zgl}s/}) and

n‘f(:>R1UR27 77m) = Wd),(tl,...,tp) (ﬂ-? g”? m)[zg’,lv sy Rgls! ST Ry ey ZS/]-
We proceed by case distinction on lab(¢, 7):

lab(¢,7) = & for some § € A and j € [q]:
On the one hand, we know that from reduction of the call

g" (6™ (sub(mark(¢), 71), ..., sub(mark(¢), 7q))[ue < te,c € [pl], M1,y -+ M)

results a call of the form g(e™, o1,...,0s). Consequently, there must be a
rule

G001, 0g)s 21,y zsr) = o (U, 1, )
in Ry (for some 91,...,9%s € RHS(G,Q,V,, Zs»)) and:

nf(=R,UR,, 01) = nf(ZRURy, Yi[va — sub(p, md)[uc — t.,c € [p]],d € [g],
Zm = N, m € [8"]])
= (by reordering of normal form computations)
nf(:>R2v (i [Ud — nf(:>R175Ub(¢v T‘-d) [UC —le,c€ [p]])7 de [q]v
Zm nf(:>R1uR2;7]m), m e [SHH)
= (by the above induction hypothesis for )
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nf(= gy, Yi[va < nf(=r,, sub(¢, 7d)[uc — tc,c € [p]]),d € [q],
Zm Wd),(th...,tp) (71—7 g”7 m)
[Zg’,la ceeyRglis! ST RLy e zsz],m S [SH]])
= (since the only occurrences of zy 1,..., 24 ¢ are in the expressions
substituted for the z,)
nf(=py, Yi[va < nf(=r,, sub(¢, 7d)[uc — tc,c € [p]]),d € [q],
Zm Wd),(th...,tp)(ﬂ-v g//v m)v mc [SHH)
[29/71, vy Rglst ST Ry Zs/].
On the other hand, taking into account that the call g(vj,¢1,...,%;) in
the above rule from R must be the unique occurrence of a g(vj,...)-
call in the d-rules of the weakly single-use mtt M5, we have by definition

of Pary (s,....t,)"

DTy, (1y,...t,) (71, 9, 1)
= nf(:>R2v 1/)1 [Ud — nf(:>R175Ub(¢v T‘-d) [UC —le,c€ [p]])7 de [q]v
Zm — DTy 1, .1, (M, 9" m),m € [s"]]).

Since for every m € [s”] we know by the induction hypothesis for = that
PaTy (1,1, (m 9" m) € RHS(G,Q, Y, {24 1,...,24,5}), and since for ev-
ery d € [q] we have nf(= g, , sub(¢, 7d)[u. — t.,c € [p]]) € Ta(Y;) (because
¢ € RHS(F,A,U,,Y,)), this implies:

ch,(tl,...,tp) (ﬂ-j7 9, l) € RHS(G7 Qa Y., {Zg’,la CE zg’,S’})'

We also have that the previously computed equivalent of nf(=g,ur,, 01)
equals

W¢7(t1,,,,7tp)(ﬂ-jagu l)[zg/,la ceeyZglls! TRy e 728'] )
which proves the claim.

lab(¢, ) = f for some f € FtD 1< j—1<qandlab(¢,n1) = u; € Up:
On the one hand, we know that from reduction of the call

" (™ (u;™t, sub(mark(¢), 72), . .., sub(mark(¢),n(q + 1)))[ue « te,c € [p]],
m,... ,’I]SN)

results a call of the form g(e™ p1,...,0s). This means that a call of g
reaches the (j — 1)st context parameter position of the call of f™ on ;.
By the induction hypothesis I for ¢; we know that for a call of the form
9(yj—1,0%,-..,0,) resulting from a reduction of

g”(f(ti7yl7 R 7yq)7217 oo 728”) )
we have:

Wf;ti (] — ]-797 l) S RHS(G, Q, Y;], {Zg”,l, .. ,Zg//73//}) and

nf(:>R1UR2a QE) = Wf,ti (.] - 1,9, l)[zg”,lv ceey Rl sl T 2]y ey ZS//].
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For our call g(™/, g1,..., 0s) resulting from reducing

9" (f™(t;, sub(mark(¢), 72)[uc «— te, c € [p]],
sub{mark(@), w(q + D)lie — terc € [p]),
M- - 7775”) 5

this implies the following calculation:

nf(=RrURs, ) =1f (= RiURs, O lys — sub(@, (b + 1))[uc e, c€[p]], b€ ],
Zm, < Nm,m € [s"]])
= (by reordering of normal form computation)
nf(:>R1UR27nf(:>R1UR27 92)[yb — SUb((bv W(b + 1))[”6 —le,c€ [p]]v be [Q]v
Zm — Nm,m € [s"]])
= (by nf(=riurs, 0)) =Dary,,(J — 1,9, 02971, - - 2975 — 215, 250])
nf(:>R1UR27Wf,ti (j—1,9, l)[zg//,l, S Y el B ZS//]
[Z/b — sub(¢, (b + 1))[“0 —le,c€ [p]]7 be [q]7
Zm < Nmsm € [$"]])
= (by reordering of normal form computations)
nf(:>R2va,ti (j—-1,g, l)[ZgN’l, N A LA el Zs”]
o — nf(=r,,sub(¢, m(b+ 1))[uc — tc,c € [p]]), b € [q],
Zm — Nf (= R,URss Mm), M € [SH]])
= (by the above induction hypothesis for )
nf(:RQ,Wf)ti (] —1,9, l)[Zg//71, ceey gl st T 21y ey ZSN]
o — nf(=r,, sub(¢, m(b+ 1))[uc — tc,c € [p]]), b € [q],
Zm — DTy (1, .1, (M5 9" m)
[29171, cey Rglst TRy zs/],m S [S”]])
= (by composing substitutions)
nf(ijWf,ti (.] -lg, l)[yb — nf(:>R1 ) SUb(¢7 W(b + 1))
[uCHtCa ce [p]])7 be [Q]7
Zg',m Wd),(tl,...,tp) (777 g”a m)
[Zg/ 151 2g 50 = 2150y Zt)

m & [s"]]).

Since we reasoned above that
Wf,ti (j -1,9, l) € RHS(G7 Q, Y(17 {Zg“,la [ Zg//,s”}) )

pary,,(j — 1,g,1) does not contain variables from Zea\{zgr15- 52978}
Hence, we can transform the previous expression into the following!:

1 It does not matter which values we replace for the variables from Zc\{zg7 15> 2g s}, be-
cause they anyway do not occur in pary . (j —1,9,1). We only need to ensure that for the
Zgit 15+, 2g1 g1 the same values are substituted as in the previous expression.
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nf(:>327Wf,ti (] - 1,9, l)[yb — nf(:>R1 ) SU‘b(d)v W(b + 1))
[uc —te, c€[p]]),b € [g],
Zg m W¢7(t1,...7tp)(7ﬁ g",m)
[29171, ey Zg’,s’ = 21y ey Zs/],
g" e G(s/”-i-l),m c [S///H)
= (by composition of substitutions, using that the normal forms
replaced for the y,...,y, do not contain zg 1,...,24 )
nf(:>327Wf,ti (] - 1,9, l)
o —nf(=r,,sub(@,m(b+1))[uc — tc,c € [p]]),b € [q],
Zg'"m Wq&,(tl,...,tp)(ﬂ-vgmvm)v g/// € G(S“/Jrl)vm € [SHIH)
[2g/ 1,3 2g/ 50 < 21, ...y 2]

On the other hand, by the definition of pary «, ., ), we have:

Wd),(th...,tp)(ﬂ—j?gvl)

= nf(:>327Wf7ti (] - l,g,l)
lyo = nf(= gy, sub(¢, m(b+ 1))[uc — te,c € [p]]),b € [q],
2y DTy 1y o) (Mg m), g € GETHD m e [s7]).

Since for every m € [s”’] we know by the induction hypothesis for = that
PaTy (1,...1,)(m 9" m) € RHS(G,Q, Y, {z41,...,24,}), and since for ev-
ery b € [q] we have nf(=rg,,sub(¢,m(b+1))[uc < te,c € [p]]) € Ta(Yr),
this together with par;, (j — 1,9,0) € RHS(G,Q, Yy, {297 1,...,2g7,57})
implies:

ch,(tl,...,tp) (ﬂ-j7g7 l) € RHS(G7 Qa Y., {Zg’,la CE zg/,S'})'

We also have that the previously computed equivalent of nf(=g,ur,, 01)
equals

pa'rqb,(tl,...,tp)(ﬂ-j?ga Z)[zg/,la ceeyRglls! TRy ey zs’] 5

which proves the claim. [
In Subsection 4.5 we posed the following question:

Q : “Given two states f € FU'+1) and g € G+ and some input tree ¢ for M,
can we for every state g’ of My and every context variable yy from y1,...,y,
uniquely determine, what will be the context parameters in every occurrence
of a call of ¢’ on yi during the reduction of g(f(¢t,y1,---,Yr), M1, ---,7s)?”

Because of Theorem A.4, we can now answer this question positively by stating
that the /th context parameter of every such call of ¢’ on y; will be equal—modulo
further reductions—to pary ;(k, ', 1)[2g,1, - -5 Zg,s < N1s -+ -5 7s)-

Ezample A.5 (pary ,-functions answer question Q)
For the mtts M; and Ms> from Example 4.2 we computed in Example A.2 the
following:

thA(B(E))(L 92, 1) = w(gl (yla Zgl,l)v Zg1,1) € RHS(G7 Q, Y1, {zgl,l})'
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Theorem A.4 now says that if a call of the form ga2(y1, 01) occurs during a reduction
of g1(f1(A(B(E)),y1),z1) with =g, uR,, then

nf(=Rr,uRrss 01) = w(91(y1, zgl,l)v Zgl,l)[zgl,l — 21]

must hold. In fact, we have in Example 4.2 seen the following reduction:

g1 (f1(A(B(E)),y1), 21) = R,ur, 91(BW1), 92(y1,w(g1(y1,21),21))). <

Next, we define—for every state f and every input tree ¢ of M;—two auxiliary
notions that will be needed in the further proofs. The first is a unary predicate on
pairs, consisting of a context parameter position k of f and some state g of Mos.
It reflects whether a call of g on the kth context parameter of f can result from
processing the intermediate result generated by M7 (with f on t) with states of Ma.

The second auxiliary notion is a binary relation intended to represent the possible
nesting of occurrences of such calls.

Definition A.6 (unary F¢: and binary <)
For every f € FU'tD t € Ty, k, k' € [r] and g,¢' € G, we write:

1. F4 (k, g) iff there exists a ¢’ € G©"'+1) such that there exists a reduction
of ¢""(f(t,y1,- -+ Yr), 215,25 ) With =g ,uR, in which a call of the form
9(Yk, . . .) occurs.

2. (k,g) <zt (K, g') iff there exists an | € [rankg(g) — 1] such that pary ,(k, g,1)
contains an occurrence of a g'(ygs, . . .)-call.

For every subset C C [r] x G, we write (k, g) <}, C iff there exists a (K", g"") € C
with (k, g) <G (K", ¢""). Analogous for %}it. &

In Subsection 4.10 we claimed that for non-copying M; and weakly single-use My,
we cannot reach a situation where two calls corresponding to one and the same such
pair are nested, which would be a similar situtation as in “counterexample” (b) in
Example 4.3. Now, we can formalise this statement (in Lemma A.8), after having
established two properties of the notions introduced in Definition A.6.

Lemma A.7 (propagation of F¢; and <y )
For every f € FU'tD t € Ty, k, k', k" € [r] and g,¢,¢" € G-

1. If by (k,g) and (k,g) <54 (K, ¢'), then 5, (K, ¢').
2. If by (k,g) and (k,g) <5: (K',9") <5 (K", g"), then (k,g) <. (K", g").

Proof
Let g € GG and ¢/ € G6'+D).

1. If sy (k,g) and (k,g) <z (K, ¢'), then we know by Definition A.6 that there
exists a ¢"” € GE"'+1 such that a call of the form 9y, 01, - -, 0s) occurs
during a reduction of ¢"'(f(t,y1,.-.,Yr), 21, - -, 25 ) With =g, URr,, and that
there exists an [ € [s] such that par;,(k,g,l) contains an occurrence of a
9 (yxr, .. .)-call. Tt follows from Theorem A.4 that nf(=r,ur,,0:) is equal
to pary . (k,g,0)[zg 15 .-, 2g s z1,..., 2en] and hence contains a call of
the form ¢'(yw, 01, ..., 0% ). Since this call occurs in a = g, ur,-reduction of
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g"(f(t,y1,-- ., yr), 21, .., zs), it follows that F¢, (K, g").

2. If additionally (k',¢") <¢: (k”,¢"), then by Definition A.6(2) there exists an
I" € [§'] such that pary ,(k', g',1") contains an occurrence of a g” (yx, . . .)-call.
Again by Theorem A.4 follows that nf(=r,ur,,0}) contains a call of the
form g”(yx,...). Since—as a subtree of nf(=pg,uR,, 01)—0) 15 & = R,UR,-
normal form, this ¢”(yg~,...)-call is in fact a subtree of g, and hence of
nf(=Rr,UR,, 01) = Dary (K, g, 1)[2g7 15y 2gm s = 21,..., zgm]. According
to Definition A.6(2) it follows that (k, g) <. (K", ¢”). O

Lemma A.8 (no cycles in <)
Forevery f € FUtY t € Ts, k € [r], g € G: if 4, (K, g), then not (k, g) <j{’t (k,9).

Proof

Let g € GG | and assume F¢e (k,g) and (k,9) -<}r,t (k,g). By repeatedly apply-
ing Lemma A.7(2), we obtain (k,g) <y (k,g). By Definition A.6(2) this means
that there must exist an [ € [s] such that par; ,(k, g,l) contains an occurrence of
a g(yk, . ..)-call. Since k¢, (k,g), there must exist a ¢’ € G+ such that dur-
ing a reduction of ¢'(f(¢t,y1,.-.,Yr)s21,-..,2s) With =g ,uRr, a call of the form
9(Yk, 01, - - -, 0s) occurs. By Theorem A.4 we have:

nf(:>RIURQ, Ql) = Wf7t(k7gv l)[Zglyl, ceey Zglsl T 21y ,ZSI] ,

which contains a g(yg, 0}, ..., 0%)-call for some o},...,0, € RHS(G,Q0,Y,, Z).
Since this call does occur in a = g,ug,-reduction of ¢'(f(t,y1,..-,Yr), 215+, 2s),
we have again by Theorem A .4:

nf(jRﬂJRza Q;) = Wf,t(kagal)[zg/,lv ceeyRgls! TRy -725/]-

Since—as a subtree of nf(=gr,ur,, 01)—0] IS @ =g, Ur,-normal form, this implies:

Q; = Wf,t(k7g7 l)[zg’,lv ety Zg’,s’ TRy, zS’] = nf(:>R1UR27 Ql)

But ¢} was shown above to be a proper subtree of nf(=r,ur,, 1), which leads to
a contradiction. [

We make two simple observations about sufficient conditions for the notions intro-
duced in Definition A.6.

Lemma A.9 (sufficient conditions for by, and <y¢)
For every f € FUt) t € Ty, kK € [r], g € GCTY and ¢’ € G-

1. If yp o occurs in nf(=pre, nf(=r., 9(nf(=ry, fE Y1, - Ur))s 21, -5 25)))s
then k¢4 (k, ¢').

2. If for some [ € [s], the normal form nf(= pre, pary ,(k, g,1)) contains y: g,
then (k,g) < (K, 9').

Proof
Follows easily from the definition of Pre and Definition A.6. [
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Now, we prove an important technical lemma about the correctness of precomputing
translations of the first mtt’s context parameters with states of M, (given the
correct context parameters of these states on reaching Mi’s context parameters),
and then providing these translations in the appropriate positions of the result
obtained by computing in ignorance of M7’s concrete context parameter values.

Lemma A.10 (precomputing translations)
For every f € FatD) g c GEH) t € Ty, r € Nand 6y,...,0, € Ta(Y,):

nf(:>Preanf(:Rzag(nf(:>31vf(ta Y1, '7yq))7217 s 728) )
[ykrgl - nf(:Rzﬂgl(thf,t(kvg/a 1),... 7Wf,t(kvg/7 SI))
[yl,...,yq<—91,...,9q])
(29,151 Zg,s €= 2155 2s)[Zg1 15+ - Zgys, < il ..., il
k€lgl,g € G
=nf(=r 9(nf(=r., f(E,01,...,04)), 21,...,25)).

Proof
o Firstly, consider the normal form nf(=r,ur,, 9(f (& Y1, .-, Yq)s 21, -, 25))-
We are going to prove by structural induction that for every subtree o €
RHS(G,Q,Y,, Zs) of this normal form the following holds:

nf(:>Pre; 9)
[yk,g’ — nf(iRzag/(ykva‘,t(k? g/a 1)7 s an,t(k7 g/a S/))
Wi, Yqg < 01,...,64])
(29,151 Zg,8 €= 2155 2s)[Zgy 15+ 5 Zgus, < il ... il
kelg,g € GEHY]

=nf(=ry 0[Y1,- -, Yqg < b1,...,04]).
The cases ¢ € Z, and 90 = w(p1,...,0p) (for w € Q® and 01,.--,0p €
RHS(G,0,Y,, Z,)) are straightforward and thus omitted here.
In the case 0 = ¢"(yr, 01,-..,0s) for some yp € Yy, ¢" € GG"D and
01,-..,0s € RHS(G,Q,Yy,, Zs) we reason as follows. Since ¢” (yx, 01, - - - , 0s)

is a subtree of nf(=r,ur., 9(f(t,y1,---,Yq), #1,---,2s)), we can apply The-
orem A.4 to obtain that for every [ € [s”] we have:

pary (K, g",1) € RHS(G, 2, Yy {21, . 7,5}) and

nf(:>R1UR27 Ql) = Wf,t(kl7g”7 l)[zg,la ey Zg,s 21y ey Zs]~

Hence, we calculate for every [ € [s”]:

pars (k' 6" Dy, yg = 015, 0g][2g.1, - -+, 298 + 2150+ 15 24]

(291,15 -+ 2,5, — il ..., nil]
= (since the 64, ...,6, do not contain any variables from Z¢,
and pary ,(K',g",1) € RHS(G,Q,Yy,{zg,1,- -, 2g,5}) contains no
variables from Zg\{zg,1,...,24,s})

pary (K, 9" D[2g.15 -5 2 < 21,5 28] (Y15, Yg 015+, 0]
= (since, as subtree of a normal form, g; is itself a normal form,
Le. o =nf(=r,ur,, 0) =Pary,(k', 9", D)[zg1, -, 29,5 < 21,5 25])
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oyt -, Yqg = 01,...,04].

Now, we can calculate:

nf(=prre, 9" (Yrrs 01,-- -, 0s))
Wrk,g — nf(=Ro, 9 (yk, PaTy (K, g’ 1), ... DTy (K, g, 7))
Wi, Yqg < 01,...,64])
(29,151 Zg,s €= 2155 2s)[Zgy 15+ 5 Zgus, < il ... il
k€ lgg € GEHY]
= (by nf(=rre, 9" (Yrrs 01, -, 057)) = Yir g7)
nf(=r., 9" (yw, Dary (K, 9", 1), ..., pary (K, 9", "))
Wi, s Yqg < 01,...,64])
(29,151 Zg,s ¢ 2155 2s[2gy 15+ 5 Zgu.5, il ..., nil]
= (by reordering of normal form computation and substitution)
nf(=ry, 9" Ok, Dars (K, ", D[y1, - - -, yq < 01, .-, 0]
(29,1, ) 2g,8 < 215+, 2]
[2g1,15 -+ Zgu,s, < il ... il

ey

Wﬁt(k/?g”asﬂ)[yla ey Ygqg — 917 o '7911]

(29,1, ) 2g,8 < 215+, 2]
[291,17 s Rgu,s nil, ..., TLZl]))
= (by the equivalence shown above for every o;[y1,...,yq < 01,...,6,])

nf(ﬁRzag//(ok'vgl[ylv" v Yq 91)' .. ,Hq],

Qs”[yla e Yqg — 017 R 79(1]))
= (by substitution)

nf(ﬁRzagI/(yk’vgla' "795”)[y17-' - Yqg — 91)' 79(1])

e By reordering of normal form computations we know that:

nf(:>R1UR27g(f(t7yla oo ,yq),Zh .. '728))
= nf(iRzﬂg(nf(iwa(tv Y1, .- 7yq))7217 .- -725))~

The lemma is hence proven by the following calculation:

nf(:>PT€a nf(:Rzag(nf(jRuf(tv Yi, -y yq))7 Rlyeees ZS) )

[yk,g’ — nf(iRzag/(ykva‘,t(k? g/a 1)7 s an,t(k7 g/a S/))

[yl,...,yq — 91,...,0q])
(29,151 Zg,s €= 2155 2s)[Zgy 15+ - 5 Zgus, < il ..., il
k€lgl.g' € GEHY]
= (by the proposition proven in the first item
for 0= nf(észg(nf(éRla f(t7y17 s qu))a Rlyeees ZS)))
nf(:Rzanf(észg(nf(éRla f(t7y17 s qu))a Rlyeees zS))
[yl,...,yq 4—01,...,9(1])
= (by reordering of normal form computation)

nf(=r,, g(nf(=r,, f(t,01,...,04),21,...,25)). O
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The following lemma states a similar property as the previous one, but for results
of pary ,-functions.

Lemma A.11 (purely technical)
Forevery f € FlatD) g GGtV t € T k€ [q],1 € [s],7 €N, b4,...,0, € Ta(Y;),
if k¢ (K, g), then:

nf(ﬁPre;Wf,t(kvgvl))
[yk’,g/ — nf(:>R27 g/(yk’an,t(k/a q, 1)7 e 7Wf,t(k/7 q, S/))
[yl;---;yq 4—01,...,9(1]),
K €lg,g' € G

= nf(= Ry, Dty (K, 9, D)[Y1, - - yg < 01,...,04]).
Proof
If s+ (k, g), then we know that there exists g” € G+ guch that during a reduc-
tionof ¢”(f(¢,y1,---,Yq), 21, ..., 2s7) With =g, Ur, a call of the form g(yx, 1, . .., 7s)
occurs. By Theorem A 4,

BT 4 (k, 9,1) € RHS(G,Q, Yy, {zgr 1, 2 o }) and

nf(jRﬂJRQanl) = Wf,t(kaga l)[zg”,lv ceey RBglt st T Ry ey ZS//].
Now, we prove by structural induction on the subtrees of Wf)t(k, g, 1) that for every
such subtree p € RHS(G,Q,Y,, {2g7 1, .., 247 ¢ }) holds:

nf(:>Prea Q)
[yk’ﬂ' — nf(:>R27 g/(yk’7Wf,t(kla g, 1)7 s 7Wf7t(k/7 q, S/))
[yl,;..,yq H91,...,9q]),
K €lql,g € GETY]

=nf(=Ry 0[Y1,---+Yqg — b1,...,04]).
The cases 0 € {2g7.1,- .., 2915} and 0 = w(p1, . . ., 0p) forw € QP and g1, ..., 0, €
RHS(G,Q,Yq,{zg7.1,...,2g7 s }) are straightforward and thus omitted here.

In the case 0 = g///(yk"’,é)l,-- ,795///) for some Yp'r = }/q, g/// c G(S”l""l) and

01,...,0s € RHS(G,Q,Yq,{2g7.1,...,2¢7.s}) we reason as follows. Since

n
g (yk”’a 01+, Qs’”)[zg”,la e 7Zg”,s” 21y 728”]
is a subtree of nf(=gr,ur,, M) that occurs during a = g,ug,-reduction of

g”(f(t7y1)' . )yq)azlv" '725”)7

"] we have:

we obtain from Theorem A.4 that for every I’ € [s

Wf)t(km, g///7 l”/) S RHS(G, Q, Yq, {Zg”,l, ce ,Zg//73//}) and

nf(jR1UR2) o [Zg”,17 ey zg”,s” Ry, ZS//])
— " noqn
= pary (K", g" 1" )zgr 1, 290 50— 21500, 250
Since, as a subtree of nf(=gr,ur,, M), also oy [zgr 1,...,2g1 57 < 21,..., 2] s &

normal form, we have

oy [2911717 ey Zg”,s” — 21y ’ZSN]
o n noqn
—parﬁt(k , g ,l )[291171,...,29//’5// <—Zl,...,ZSN]
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and consequently (since 21, ..., z¢» do neither occur in g nor in pary (k" g"',1""))
for every I"" € [s"]: oy = pary (K", g™, 1""). Hence, we can calculate:

nf(jPTea g///(ykma 01, -, QS/”))
[yk’,g’ — nf(ij g/(yk’an,t(k/a glv 1)a s 7Wf,t(k/7 g/a SI))
[yl,;..,yq —01,...,04]),
K €lql,q € GEHY]
= (by nf(=pre; 9" (yrrr, 01, - -, 051)) = ygm g and substitution)
nf(jR27 g”/(yk”’vmf,t(klnv g”/a 1)7 s 7Wf,t(k”/5 g”lv S/H))[yla s Yg 01) EERE 9(1])
= (by owr = pary (K", g"",1"") for every I € "))

nf(iRgag/I/(yk”U 01+, QS”’)[yh e Yq — 917 e 79q])' O

For the final proof we need a further auxiliary notion, complementary (in the same
sense as the pary ;- and pary, , ., y-functions complement each other) to the unary
predicate from Definition A.6(1). It indicates, which paths in a right-hand side ¢
of My can be reached by which states of My if the recursion variables in ¢ are
instantiated with particular input trees ¢y,...,%,.

Definition A.12 (Fg (1, ,...1,) as a complementary for &= +)

For every r € N, p e N, ¢ € RHS(F,A, Uy, Y,), t1,...,t, € Tx, ™ € paths(¢) and
g € G, we write g (1, ..¢,) (7, g) iff there exists a g’ € G+ guch that during
a reduction of ¢'(mark(¢)[uc «— te,c € [p]], 21, ..., 2s) with =g ,uR, a call of the
form g(e™,...) occurs. <

Two “propagation” properties relating the predicates from Definitions A.6(1) and
A.12 are proven in the following two lemmata.

Lemma A.13 (propagation from =y oty...t,) 10 Frnss o (tr,ty))

For every f € FUtD) ¢ € W ¢, ... t, € T, k € [r], g € GEY with
s >0, and 7 € paths(rhsys): if Ffo0,,..t,) (K, g) and lab(rhss s, ) = yk, then
|_'rh.9f,c,7(t1,...7tp) (ﬂ-vg)'

Proof
If F¢ o(ty,....t,) (K, g), then there exists g € GG+ such that during a reduction of

GOty tp)y Yty ooy Up)y 21y e vy Zs7)

with = r,ur, a call of the form g(yy, . . .) occurs. Clearly, this call must occur during
a reduction of ¢'(rhsf s [ue «— tc,c € [pl], 21, ..., zs). Since 7 is the only path such
that lab(rhsf o, m) = yi (because M, is non-copying), this corresponds to a call
g(yE,...) occurring during a reduction of

g (mark(rhsgo)uec < te,c € [pl], 21, .., 2s)
with = g, UR,. This means that Fpps, (4,00, (7,9). O

Note that in the previous as well as in the following lemma the two preconditions
r > 0 (implicit from k € [r] in Lemma A.13) and s > 0 cannot be fulfilled in the case
that one of the two involved mtts is a tdtt. Hence, the lemmata hold trivially in this
case. If those preconditions are fulfilled, then neither M7 nor M5 is a tdtt, hence we
can use the non-copying property of M; and the weakly single-use property of M.
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Lemma A.14 (propagation from by, 4y tobg 1) and Fyy,)

For every (r + 1) € rank(F) with r > 0, p € N, ¢ € RHS(F,A,U,,Y,),
t1,...,tp, €Tx, g € GETY with s > 0, j € Ny, 7j € paths(¢) and lab(¢, 7j) ¢ Up:
if g, (1,.0t,) (77, 9), then:

1. If lab(¢, ) = & for some § € A@ | then for every g’ € G+ if there is a rule
g (6(v1,. . vg)s 21505 28) = ... g(vg,...) ... in Ry, then g oy (T, 97).
2. If lab(¢, ) = f for some f € F+D) and lab(p,71) = u; € U,, then:
@ Fra G-lg)and
(b) for every I € [s], ¢ € G® Y and m € [§']: if 2y,m € Zg occurs in
pary ., (J—1,9,1), then Fg 1 4.9 (m, q").

Proof
If 4 (41,01, (77, g), then there exists g” € G"+Y such that during a reduction of
g"(mark(®)[uc < te,c € [p]], 21, .,2s») with =g, R, a call of the form g(e™/,...)

occurs. By Lemma A.3 there exists ¢’ € G+ such that

|‘¢7(t1,...7tp) (7779/”)

and reduction of a call of the form ¢"'(sub(mark(®), 7)[uc < tc,c € [p]],...) leads
to the mentioned g(e™ . ..)-call.

1. If lab(¢, ) = d, then we know that a reduction of g’”’(6™(...),...) leads to a
g(e™,...)-call. Hence, there must be a call of g on v; in a rule of g’ at 4.
But by the weakly single-use property of My and the rule assumed for g’ at d,
this implies g’ = ¢’, and hence ¢ (1, ..+, (7, 9').

2. If lab(¢p,w) = f and lab(¢,71) = wu;, then we know that a reduction of
g"(f™(ti,...),...) leads to a g(e™,...)-call. This means that a call of g
reaches the (j — 1)st context parameter position of the call of f™ on ¢;, hence
Ff+ (j—1,g9). By Theorem A.4 we have for every [ € [s]:

Wf,ti (.] - 1,9, l) € RHS(G7 Qa Yqv {Zg”’,lv ceey Zg”’,sm})'

Hence, if a 24, occurs in pary, (j — 1,9,1), then g” = g’, which implies
Fostr ety (Mg'). O

Now, we are going to present and prove the main lemma of this appendix. It con-
sists of six statements that will be proven by nested simultaneous induction. In
order to illustrate the proof structure, the statements are arranged in a nested
fashion. We have a simultaneous induction of statements I and II for trees over
the ranked alphabet 3. Statements Ia and Ib specify exactly the semantics of the
(f,9)- and (ky,1,)-states from Construction 5.1. Statement ITb makes precise how
the par,-functions (computing in ignorance of concrete input trees for the recur-
sion variables in M;’s right-hand side ¢) are related to the par, «,
from Definition A.1l. Nested inside the statement ITa, we have statements II(a)i
and II(a)ii that will also be proven by simultaneous induction, but for all possible
right-hand sides built from states and output symbols of M; instead of all input
trees. Since these technical statements are only subsidiary (apart from the fact that
indeed statement II(a)ii(A) will be used in the main Theorem A.16), we will not

¢,)-functions
vp
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,,,,,,,,, Lemma A.9(1)

Lemma A.10

Lemma A.7(1)

Lemma A.13

Lemma A.8
Lemma A.9(2)

Lemma A.14

Fig. A 2. Proof structure for Lemma A.15.

Lemma A.11

try to provide an intuition for them. The proof structure and dependencies used in
the inductive argument are shown in Fig. A 2.

Lemma A.15 (relating ingredients of Mo with pary ;- and W@(th___,tp)—functions)

I. For every t € Tx:

(a) for every f € F'+Y) and g € GG+Y:
’I’Lf(:>R1;27 (f7 g)(t7y17g17 ceey yr’gu,Zl, ceey Zs))

= nf(:>PTeanf(:>Rgag(nf(:>R17f(t7y17 s 73/7‘))7 Blyeevs Zs)))
(b) for every f € FOt) g e GG+ k€ [r] and I € [s], if 74 (k, g) then:

nf(:>R1;27 (kf7 lg)(t7 Y915+ Yr,gusZgr,1s- -+ Zgu,s“))
= nf(:>PT€7Wf7t(k7g7 l))

II. For every p € N,tq,...,t, € Tx:

(a) for every r € N:

i For every ¢ € RHS(F,A,Up,Y;):
for every g € GGt
nf(:>R1;27nf(:>R2UPai’rag(¢a 21y '7ZS))[u17 sy Up — t1,. .. 7tp])
=nf(=ry 9(nf(=Ry, Olur, ... up —t1,. .., tp])s 215+, 25))

ii For every ¢ € N,¢1,...,¢0, € RHS(F,A,Up, Y,
(A) for every s € Nand ¢ € RHS(G,Q,V,, Z,

nf(= R0 nf (= RoUPairs Y[Va — ¢a,d € [q]])[uc — te, c € [p]])
=nf(= Ry, Y[va < nf(= Ry, Galur, .. up — t1,... 1)), d € [q]])

(B) for every i € [p], f € F4¥), C C[q] x G, k € [q] and g € GE+D):

):
):
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if s, (k,g) and not (k,g) <%, C, then:
nf(= Ry N (= RyuPairs nest f(k, g, C) Y1, - - Yy < G155 Bgl)
[u— wilur, ..., up < t1,...,tp))
= nf(iszg(thf,ti(kvgv ]-), s VWf,ti(kagﬂ 8))
[yp — nf(=ry, Polur, ... up —t1,....t]),b € [q]])
(b) for every (r + 1) € rank(F) with r > 0, ¢ € RHS(F,A,Up,Y,), ™ €
paths(¢) such that lab(¢, 7) ¢ U,, for every g € GGV and [ € [s]:
if g (t1,0tp) (m,g), then:
Nf (= Ryos N (5 RoUPairs DTy (T, g, 1)) U1, - -y up —t1,.. . 1))
= Wq&,(tl,...,tp)(ﬂ-vgvl)
Proof
We prove I and IT by simultaneous induction:

I<1I1: Lett =o(ty,...,t,) for some o € £ and ty,...,t, € Tk.
Ia:
(= Ri> (F,9) (01, ) Yligrs - s Yrigus 215 - -+ 5 Zs))
= (by =r,..)
Nf (= Ryms TS (f,g),0 (U1 -y Up — t1, ... 1))
= (by definition of rhs (s 4) , in Construction 5.1)
Nf(=Ri.a> N (= RoUPreuPairs J(TRS f.0, 215 ooy 2s) ) [ULs o up — t1, ... Tp])
= (by reordering of normal form computations and substitution)
nf (= pPre, Nf (= R0 Nf (5 RoUPair, (RS s 6, 21, - . -, 25))
[u1,. .., up < t1,...,tp]))
= (by induction hypothesis II(a)i for ¢ = rhsy, € RHS(F,A,Up,Y;))
nf(=pre;nf (= Ry, g f (= Ry, Thsfo[ur, ... up —t1, ... t]), 21, .., 25)))
= (by =r,)
nf(= pre;nf(Z Ry 9f (R, f(O(tr, - 1), Y15 Yr))s 2150+ 15 25)))

Ib : Assume g o). 1,) (k,g). We have by =g, ,:

nf(:>R1;27 (kfﬂ lg)(a(tlv s 7tp)7 Yigise -2 Yrgus Zga,1y - 7Zgu78u))
=N (SR> ThS (ks 1), 0 [UL5 - s Up 1, L))
Now, there are two possible cases:

1. If rhss,, does not contain the context variable y, then by Construction 5.1
we have rhs(; 1,).0 = nf (= Rr,uPreuPair, il) = nil and thus:
nf(:>Rl;2,rhs(kf,lg))o[ul, ceUp — b))

= (by ThS (ks 1,),0 = Mil = nf (= pre, nil))
nf(= pre, nil)
= (by definition of Wfﬁ(th_”)tp))
nf(jpre, Wf70'(t17...,tp)(k? 9, l))
2. If rhsy, € RHS(F,A,U,,Y,) does contain the context variable yz, and

the path of the unique such occurrence (notice that M; is non-copying) is
Ty, € paths(rhsy,q), then we have:
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Nf(Z Rysns ThS (hj 1),0 (W15 - -5 Up = T1y oo, Tp])
= (by definition of rhs, ;)0 in Construction 5.1)
Nf (= Rios f (5 RoUPreuPairs DTy, (T, 9, D) [, up — 1, )
= (by reordering of normal form computations and substitution)
nf (= pre; nf (= Ryos S (= RoUPair, PATyps,  (Ty,, 9,1))
[ul,...,up — tl,...,tp])).

By Ffo(tr,.ty) (k,g) and Lemma A.13%, we know Frhs g o (tretn) (e 9),
and hence by induction hypothesis IIb3 for ¢ = rhs f,0, the previous ex-
pression is equal to:

nf(:>Prea thSf,g,(th...,tp)(ﬂyk 1 9s l))
= (by definition of pary ,(, . +,))

nf(:>PT€7 Wf7o(t17...,tp)(kﬂ g, l))

IT <= I : We first prove statement ITa and then use it for proving IIb. In doing so,
we can assume statement I for the fixed tq,...,t,.

ITa : by simultaneous induction of II(a)i and II(a)ii:
II(a)i < II(a)ii : by case analysis on ¢ € RHS(F,A,U,,Y,):

¢ =Yk € Yr :
Clearly both sides of the equation are equal to g(yk, 21, . . ., 25).

¢ =06(p1,...,0,) for some § € AD and ¢y,...,¢, € RHS(F,A,U,,Y,):

nf(le;zanf(:}R2UPairv 9(5(¢1a EREE) (bq)a RBlyeees ZS))

[U1,...,up < t1,...,tp)])
= (with rule g(6(v1,...,vq),21,...,2s) = Thsgs in Ra)
nf(:>R1;27nf($R2UPair7 7'th7§[1)1, ceey Vg ¢17 ceey ¢q])
[ul,...,up <—t1,...,tp])
= (by induction hypothesis II(a)ii(A) for ¢ = rhsgs)
nf(=r,,ThsgsVa — nf(=r,, dalui, ..., up —ti,...,tp]),d € [q]])

= (by the above rule in Rj)
nf(jR27g(5(nf(:>Rla¢l[ula ceeyUp t17 ce. )tp])v

nf(=Ry, Ggltr, .-, Up — t1, ..., tp])), 21, -, 25))
= (by substitution and normal form)
nf(=>32,g(nf(:>Rl,5(¢1, . ,¢q)[u1, ceey Up tl, . ,tp]),
Z1y.ey2s))

&= f(ui,b1,...,0q) for f € FUOtD w;, € Uy, ¢1,..., ¢, € RHS(F,A,U,,Y,):

2 Note that the precondition s > 0 is fulfilled, since I € [s].
3 Note that the precondition r > 0 is fulfilled, since k € [r].
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By definition of Pair we have:

TLf(:>R1:27nf(:>R2UPairag(f(uia (bla e 7¢¢1)7 Zly- - ’ZS))
[ul,...,up <_t17'~'7tp])
= nf(:>R1:2,nf(:>R2UPaira (fa g)(u’ neStf(]"gl’ (Z))’

cee
nests(q, gu, 0), 21, . . -, 2s)
(29,15 s 2g,s <= 21, -+, %]
[Zgrs s Zgs — il ..., nil]
[uvyllv"'ay,; <_Ui,¢1,..,7¢q])
[Ul,...,up <—t1,...,tp])_

By composition of substitutions, this is equivalent to:

nf(:>R1;2anf(:>R2UPair7 (fv g)(ui, neSt]c(]-vg17 0)[yl/7 — op, b€ [q]]

[u<—ui][zg71,...,zg,s <—z1,...,25]
[Zgl,la---vzgu,su — nil,...,nil],

nest (g, gu, 0)[y;, < ¢, b € [¢]]
[ wil[2g,1s -5 Zg,8 < 21, -+ 2]
[Zgl,la---vzgu,su — nil,...,nil],

2150y 25))

[wi,. .. up «—t1,...,tp)])

= (by reordering of substitutions and normal form computation)
nf(thza (fa g)(tla nf(:>R2UPai7“7 neStf(la 91, w)[yl/) — ¢b7 be [q]])

[w— wilu, ..., up —t1,...,tp]

[Zg,15 -+ ) Zg,8 < 215+ 2]

(Zg1,15 -+ Zgu,5, < il ..., il
nf(:RQUPazranGStf(Qu 9us Dys, — ¢, b € [g]])

[u— wil[u, ..., up —t1,...,tp]

[Zg,15 -+ ) Zg,8 < 215+ 2]

(Zg1,15 -+ 2,5, < il ..., mil],

Z1y.ey2s))
= (by reordering of normal form computation and substitution)
nf(:>R1;2v (fv g)(tiv Y1915+ -1 Yq,9.0 %15 - - - sz))
[yk,g’ — nf(:>R1;2,nf(:>R2UPair7 neStf(ka g/v Q))[yl/; — ¢b7 be [q]])
[w— wilu, ..., up < t1,...,tp])
(29,151 Zg,8 < 21,5 2s)[Zgy 15+ -+ Zg5, < Mil, ..., il

k€ [q,g € GEHY]

= (by induction hypothesis Ia for ¢;)

nf (= presnf (5 ros g f (S Ros [ y1s - yg))s 21505 25)))
[yk,g’ — nf(:>R1;2vnf(:>R2UPaimn€Stf(kvglv Q))[yl/J —dp,b e [Q]])
[w— wilu, ..., up < t1,...,tp])
(29,151 Zg,s < 21,5 2s)[Zg1 15 -+ Zg,5, < Mil, ..., il

kel g € G
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For every y 4 occurring in

nf(=pre,nf(Z Ry, 9 f (= Ry, f(ti Y1, 1Y), 215+ -5 25)))

Lemma A.9(1) implies that ¢, (k,g’). Further, it holds trivially that not
(k,g") <%, 0. Hence, induction hypothesis I1(a)ii(B) can be applied to the
normal forms replaced for the y o in the previous expression, giving the
equivalent:

nf(=pre,nf(=r,, 9(nf(=r., f(tiy1, .- yq))7 21505 25)))
[yk,g’ — nf(:>R27g/(yk7Wf,ti (ka g, 1)7 s 7Wf,ti (ka g, S/))

[yb — nf(:>R17¢b[ula ceeyUp tla cee 7tp])7
b€ [q]])
(29,151 29,8 < 21,5 2s)[Zg1 15+ -+ Zg,,5, < Mil, ..., il

keld,g €G]
= (by Lemma A.10, where for every b € [q]:
0, = nf(:>Rl,¢b[u1, coy Uy — T, .. ,tp]) S TA(YT))
nf(= gy, g(nf (= rys f(tinf (S Ry, d1fur, . up — tr, 1)),

.y

nf(:>Rl,<bq[u1, ceey Up t1,... ,tp]))),
Zly.-ey%s))
= (by substitution and by confluence of =g,)
nf(=Ra, g(f (= Rys (Ui, b1, dg)[ua, - up —tr, o tp)),
Rlyee ey ZS))

II(a)ii < II(a)i:

ITI(a)ii(A) : straightforward structural induction on ¢y € RHS(G,Q,V,, Zs),
using induction hypothesis II(a)i on ¢; in the case v = g(vj,...) for
j € ldl-

II(a)ii(B) : For fixed i € [p] and f € F@*Y we prove the statement for
every C € P([¢q] x G) by induction on the reversed subset-order:

o C=[q] xG:
In this base case we have (k, g) <%, C for every k € [¢] and g € G, thus
nothing remains to prove.

e CClq] xG:
Assume Fy 4, (k,g). If not (k,g) <} ,, C, then (k,g) ¢ C and thus:

nf(:>R1;27 nf(j}bupm‘r, neStf(k7 976)[3/2/[7 cee 7y,; — (blv ceey (bq])
[w— wilu, ..., up < t1,...,tp))
= (by definition of nesty)
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nf(:>R1;27 nf(:>R2uPair, g(y;cv (kf7 19)(“’? neStf(lv glvc U {(kv g)})v

neStf(qvg;uC U {(kvg)})’
L2 ) Zgu»su)’
(kfa Sg)(“’? neStf(]-?gva U {(kag)})v

)

nes't.f'(q,gu,c U{(k,9)}),

29115 Zgusu)
[Z/pvy,; — (blv---v(bq])
[w— wilu, ..., up < t1,...,tp))

= (by substitution and reordering of normal form computation)

nf(:>R1;27 nf(:>R2UPaiTa g(¢ka Rly«eey zS))
[zl — (kf7 lg)(u7 nf(:>R2UPaiTa neStf(L g1,CU {(kvg)})
[y, < v, b € [q]]),
nf(= RyUPair, nest§(q, gu, C U {(k, 9)})
[y, < v, b € [g]]),
Zgi,ls s Zgu.8)5
Le[s]]
[u— wil[u, ..., up —t1,...,tp])
= (by reordering of substitutions and normal form computation)

nf(:>R1;27nf(2>R2UPairag((bka By oy Zs))[ul, cey Up t1,... ,tp])
[Zl — nf(:>R1;27 (kfﬂ lg)(uiﬂ
nf (= ryupair, nests(1, g1,C U {(k, g) Py, < ¢, b € [q]])
[ — u],

cey

1 (= Raspair et (4, g C U {(k, 9) Dl — 60,6 € [a])

[u — uy],
Zgids--- ,zg,hsu)[ul, ceUp ),
l€[s]]
= (by induction hypothesis IT(a)i for ¢y)
nf(=r., 9(nf(=ry, Pplur, ..., up — t1,...,tp]), 21, ..., 25))

[Zl — nf(:>R1;27 (kfﬂ lg)(uiﬂ
nf(:R2UPU/ir7neStf(17glﬂc U {(kag)})[yl/) — ¢b7 b € [q]])
[u  u],
nf(:>R2UPlliT‘7neStf(q7gﬂic U {(kag)})[yl/) — (bb; be [q]])
[u « u],
Zgi 1y Zges, )WLy oo Up =t Tp]),
€ [s]].

We name this expression (4) and continue to calculate on the expres-
sions substituted for the z with [ € [s]:
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nf(:>R1;27 (kfa lg)(uia
nf(= ryupairs nest(1,91,C U {(k, 9) Iy, < &, € [q]])[u — ui,
nf (= RouPair, nest (4, g, C U {(k, 9) NIy, — du, b € [al])[w — ui,
Zgilse s Zgus ) ULy ooy Up L1, Tp)])
= (by substitution and reordering of normal form computation)

nf(:>R1;27 (kf’ lg)(tiv Yi,915 1 Yaq,9u5 Fg1,15 - - Zg# Su))
[Z/k/,g’ — nf(:>R1;27 nf(:>R2UPaiTa neStf( g cu {(kvg)})
[y, < ¢u, b € [d]])
[u— ui][ur, ..., up < t1,..., 1)),
K € lg,g' € GEHY]
= (by induction hypothesis Ib for ¢;, using the
prerequisite F¢, (k,g))
nf(:>Prea Wf,ti (kv 9, Z))
[Z/k/,g’ — nf(:>R1;27 nf(:>R2UPaiTa neStf( g cu {(kv g)})
[y, < ¢v, b € [d]])
[w— u][ur, ..., up < t1,..., 1)),
K € lql, g € GEH),
Now, we want to use the induction hypothesis on C U {(k, g)}, as ex-
pressed below?, in order to show that for every [ € [s] this is equivalent
to the following expression (4++4):

nf(:>Pr67Wf7ti (kagvl))
[Z/k/,g’ — nf(iRzag/(kaWfﬂti (k/v g, 1)7 s ’Wf7ti (klv g S/))
[ = nf(=Res dolun, - up =i, p)), b € [g]]),
K € lql, g € GEHY.

To this aim, we need to establish that for every yi/,4 occurring in
nf(= pre, Pary 4, (k, g,1)) we have:

Fra (K, g') and not (K, g") <3, CU{(k,9)}.

For every such a yi/ o we have (k,g) <5+ (K',¢’) by Lemma A.9(2).
Hence, the required b4, (K, ¢') follows from the prerequisite 7, (k, g)
by Lemma A.7(1). Furthermore, if (&', ¢") <}, CU{(k, g)} would hold,
then we would also have (k, g) —<}")ti C U{(k,g)}, which cannot be true,
because by the assumption at the very beginning of the present case
we know that not (k,g) <%, C and by Lemma A.8 and k¢4, (k,g) we
know that not (k, g) —<}:ti (k,9).

Let us now return to expression (+). Replacing the expression substi-

4 For every k' € [q] and ¢’ € GG+ it Fse, (K, g") and not (k',g’) <34, CU {(k,g)}, then:
nf(= Ry (= RyuPair, nesty (K, ', CU{(k, 9)Dyy, — ¢b,b € [q]])
[w—wui][ut,...,up — t1,...,tp])
= nf(:>R2 ) gl(yk’7mj',ti (kl7 glv 1)7 s 7Wf,t,i (kl7 glv 8’))
[yb — nf(:>R17 ¢b[u17 ceeyUp t1,. .. 7t17])7b € [Q]])
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tuted there for z; (with [ € [s]) by the expression (++)—shown above
to be equivalent—gives us the following equivalent of (+):
nf(=r.,, 9(nf(=Ry, Pultr, .., up — t1,. .., tp]), 21, .., 25))
[zl — nf(jPreamf,ti (ka g, Z))
[yk/,g’ — nf(:>R2 ) g/(kaWf,ti (k/v g/a 1)7 s an,ti (k/a g/v 5/))

[y «— nf(=Rys Poltr, ... up < t1,...,tp)]),
b € [q])),
K €lg,g' € GEHY],
l€[s]]
= (by Lemma A.11 on the normal forms replaced for z1, ..., z,

using that F¢y, (k,g), where for every b € [g]:
ob = nf(:>R1,¢b[U1, sy Up tlv s 7tp]) € TA(K”))

nf(=r., 9(nf (=R, Pultr, .., up — t1,. .., tp]), 21, .., 25))
[zl — nf(ijWf,ti (kagvl)
[o — nf(=ri Polur, ... up —t1,..., 1)), b € [g]]),
L€ [s]]

= (by reordering of normal form computation and by substitution)

nf(iRzag(yk7Wf7ti (kaga ]-)7 s an,t,i(kagvs))
[yp — nf(=rys Polut, ..., up —t1,...,tp]), b € [g]])

IIb : In proving ITb we may use the statements from II(a)ii, which have previ-
ously been proven for every ¢ € N, ¢1,...,¢4 € RHS(F,A,Up,,Y;), but for the
fixed t1,...,t, under consideration in IIb. For fixed (r 4+ 1) € rank(F) with
r>0,and ¢ € RHS(F,A,U,,Y,), we proceed by induction on the prefix-order
of paths in ¢:

e In the base case € both sides of the equation are equal to z,4; by the defi-
nitions of pary and par,

ti,..t
e The inductive case 7j € paths(q;)) with j € Ny and lab(¢, wj) ¢ U, is shown
by case distinction on lab(¢, 7), assuming b4, .1, (77, 9):
lab(¢,7) = & for some § € A and j € [q]:
— If there is no g(vj,...)-call in the d-rules of Ma, then both sides of the
equation are equal to nil by the definitions of pary, and pary . 4 -

— Otherwise, if the unique such call (notice that Mjy is weakly single-
use) looks, with g’ € GV and 4y,...,1s € RHS(G,Q,Vy, Zs), as
follows:

G (0(v1seey0g)s 215y 250) — o gV, Y1, )
then we can calculate:
nf(= Ryn> f (5 RyUPair, PaT, (7], g, 1)) U1, - up <1, 1))
= (by definition of par,)
nf(=Ryz: nf (= RoUPair,

Wifvr, ..., vg — sub(p,l), ..., sub(e,mq),
2150y 2s e pary(m, g 1), ..., pary(m, g, s")])
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[ul,...,up <—t1,...,tp])
= (by reordering of normal form computation and substitutions)
nf(=Ry0> Nf (5 RoUPair, Y1[V1, - . ., Vg — sub(p, 1), ..., sub(p, mq)]
[U1,. .. up < t1,... tp]
[2m = pary(m, g',m)[ur, ..., up — t1,... ],
m € [s']]))

= (by reordering of substitution and normal form computations)
Nf(=Ry,0> Nf (5 RoUPair, Yi[V1, . . ., Vg — sub(p,m1), ..., sub(p, mq)])

[wi,. .. up < t1,...,tp)])
[2m — nf(= Ryp> nf (= RyUPair, pary(m, g',m))
[ul,...,upbtl,...,tp] N
m € [s']].

From by (4,,...+,) (77,9) and the rule of g" at § given above follows by
Lemma A.14(1) that 4 ...+, (7, ¢’). Hence, we can use the induc-
tion hypothesis for 7 to replace the expressions substituted for the z,,,
yielding the following equivalent:

Nf(=Ri.0> Nf (= RoUPair, Yi[V1, . . ., Vg — sub(p,ml), ..., sub(p, mq)])
[ul,...,up <—t1,...,tp])
[Zm — Wd),(th...,tp)(ﬂ-v g/a m)v m e [S/H
= (by the previously proven statement II(a)ii(A) for
sub(g,ml),. .., sub(¢, m7q) € RHS(F,A,U,,Y,),
s'+1 € rank(G) and ¢, € RHS(G,Q,Vy, Zy))
nf(jfbﬂbl [Ud — Tlf(:>R1, SUb(¢7 7Td) [uC —le,c€ [p]])7 de [QH)
[Zm — ch,(tl,...,tp)(ﬂ-a g/a m)v m e [S/]]
= (since the pary , ., (7, g',m) for m € [s'] are
= p,-normal forms, by the remark below Definition A.1)
nf(jlbﬂﬁl [Ud — nf(:>R17$Ub(¢v ﬂ-d) [UC —tle,c€ [p]])7 de [q”
[Zm — ch,(tl,...,tp) (ﬂ-v g/a m)v m e [S/]])
= (by composing substitutions, using that for every m € [s'] and
d € [q], no zp, occurs in nf(=pg,, sub(¢p, 7d)[u. «— t¢, c € [p]]))
nf(=nr,, Y1 [Ud —nf(=r,,sub(¢, nd) [UC —te,ce [p]])7 de [q]v
Zm ch,(tl,...,tp) (ﬂ-v g/a m)v m € [S/]])
= (by definition of par, (

t1,...,t,)» taking into account the unique

g(vj,...)-call in the d-rules of Ms as given above)
DTy, (ty,....t,) (75 9 1)

lab(¢,7) = f for some f € Fla+D) 1 < j—1< qand lab(¢, 1) = u; € Up:

Nf(= Ry N (5 RoUPairs PaTy (7], g, 1)) (U1, - up L1, 1))
= (by definition of pary)
nf(:>R1;27 nf(jRQUP(liT')
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((.7 - ]-)fvlg)(uvneStf(]-vgla {(.7 - 179)})7

)

TL@S't.f'((Lg;“ {(j - 179)})7

291717 R/ Zg;usp)
[u — Uy,
Yis- e Yy — sub(@,m2),...,sub(¢,m(q+ 1)),
Zgy s s Zgus, — Parg(m, g1, 1), ..o pary (T, G, su)])
[U1,... up < t1,...,tp)])

= (by reordering of normal form computation and substitutions)
Tlf(:>R1;2, nf(:>R2UPair;
((F—1) ;. 19)(u,nests(1,91,{(j — 1,9)})
!
[y, < sub(¢, m(b+1)),b € [q]],
nestf(q,g;u {G-19)})
[yl') — sub(¢p,m(b+1)),b e [QH7

Zg1,1y-- -azg,uas,u)
[u— wilu, ..., up —t1,...,tp]
[2g/.m = parg(m, g',m)ur, ... up —t1,..., 1],

g/ c G(Sl_,_l),m c [S/H))
= (by reordering of substitutions and normal form computations)

nf(= Ry ((J — 1)f7 lg)(tiv Ylgir- > Yaq,9.0 91,15+ - s Zgwsu))
[yk,g’ — nf(:>R1;27 nf(iRQUPairﬂ neStf(kv gla {(J - 179)})
[y, — sub(¢, m(b+1)),b € [q]])
[u — wilfua, ..., up —t1,...,t]),
keldl,g € GV
[Zg’,m — nf(:>R1;27 nf(:>R2UPaira pa%(ﬂa g, m))
(w1, ... up —t1,...,tp]),
g € GE Y m e [¢]].

From 4 (t,....+,) (7], g) follows by Lemma A.14(2a) that

'_f,ti (.] - 1ag)7

hence applying the induction hypothesis Ib for t; gives the following
equivalent expression:

nf(ﬁPre;Wf,ti (.] - 1797 l))
[yk,g’ — nf(:>R1;2vnf(:>R2UPaiTa neStf(kvg/a {(.] - 179)})
[y — sub(¢,m(b+1)),b € [q]])
[w— wilur, ..., up < t1,..., 1)),
keld,g € GEY]
[Zg',m — nf(:>R1;27 nf(:>R2UPair; pa%(ﬂa g, m))
(Wi, ... up —t1,...,tp]),
g € GE+Y m e [¢]].

Now, we want to apply—to the normal forms replaced for the y;, o—the
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previously proven statement II(a)ii(B) for the
sub(p, m2), ..., sub(¢, (¢ + 1)) € RHS(F,A,Up, Y,)

and C = {(j — 1,9)}. In order to do so, we must establish that for every
variable yy, ,» occurring in nf(= pre, Pary 4, (j — 1,9,1)) we have:

Fft, (k.g') and not (k,g') <%, {(j —1.9)}

For every such a yi o we have (j —1,9) <f4, (k,¢’) by Lemma A.9(2).
Hence, ;. (k,g’) follows from the above established ¢, (7 —1,9) by
Lemma A.7(1). Furthermore, if (k,¢") <%, (j —1,9) would hold, then
we would also have (j — 1,9) —<;{’ti (j —1,g), which by Lemma A.8 and
Fet, (5 —1,9) is impossible.

Hence, we can indeed replace the normal forms substituted for the yy, 4
according to statement II(a)ii(B), and obtain:

nf(:>Prea Wf,ti (] - ]-7 9, l))
[yk,g’ - nf(:Rzﬂgl(thf,ti (k,g'.1),... » PaTy 4. (k. g',8"))
[yp — nf(=r,,sub(¢,7(b+ 1))
[uc « te,c € [p]]), b € [q]]),
ke lg,g € GEHY]
[Zg’,m — nf(:>R1;27 nf(:>R2UPair; pa%(ﬂa gla m))
(Wi, ... up —t1,...,6p]),
g € GE'TD m e [¢]]
= (by Fft (j —1,9) and Lemma A.11, where for every b € [g]:
b = nf (= s, sub(6, 7(b + 1))[te — torc € [pl]) € Ta(Y;))
nf(ﬁRgan,ti (.] - lvg’ l)
o — nf(= gy, sub(, (b +1))[uc — te,c € [pl]), b € [q]])
[Zg’,m — nf(:>R1;27 nf(:>R2UPaira pa%(”a gla m))
[ul,...,up <—t1,...,tp]),
g € GEHY m e [¢]].
We would like to apply the induction hypothesis for 7 to the normal
forms substituted for the z4 ., in the previous expression. In order to do
so, we must establish that for every g’ € G+ and m € [¢'], if 2y .m
occurs in

nf(:>R2an,ti (.] -lg, l)

[vo — nf(=r,, sub(¢, m(b+1))[uc — te, c € [p]]), b € [d]]),
then 4 (1,1, (m,9'). Since such a 2z, ,, would necessarily have to
occur in pary, (j — 1,9,1), this condition follows from the prerequisite
Fg.(t1,.ty) (77, 9) by Lemma A.14(2b).

Hence, we obtain the following equivalent expression:
nf(iRwa,ti (.7 - 1,9, l)
o — nf(= gy, sub(g, m(b+1))[uc — te,c € [p]]), b € [g]])
[Zg',m — Wq&,(tl,...,tp)(ﬂag/vm)v g/ € G(Sl—H)a m < [S/H
= (by composition of substitutions and
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since the pary, ,, ., y(m,g',m) are = g,-normal forms)

nf(iRnyﬂfi (.7 - ]-aga l)
[y —nf(=gr,,sublg,m(b+1))[u. — tc,c € [p]]),b € [q],
Zg',m Wqﬁ,(tl,...,tp)(ﬂaglvm)v gl € G(S +1)a m e [S ]])

~

= (by definition of pary, (;, . ..))
W¢,(t1,...,tp)(77jagal)- U
Using the previous lemma, we can now prove the correctness of Construction 5.1.

Theorem A.16 (Theorem 5.2; correctness of Construction 5.1)
T(My); 7(Mz) = 7(My:2)

Proof
For every t € Ty, we calculate:

T(Mi;2)(t)
= (by definition of 7(M.2))
nf(:>R1;2,61;2[$ — t])
= (by definition of e;,2 in Construction 5.1)
nf (= Ryyns Nf (= RoUPair €22 — ex])[x — t])
= (by substitution)
Nf (= Ry.0> N (= RoUPair, €2[T — e1][x — ui])[ur — t])
= (by substitution)
nf(= Ry NS (5 RoUPair, €2[7 — v1][v1 « e1[z — wi]])[ur « 1])
= (by statement II(a)ii(A) of Lemma A.15 forp=1,t1 =t € Tx, r =0,
g=1, ¢1 =e1|x — u1] € RHS(F,A,{u1},0),s=0
and ¢ = ex[x < v1] € RHS(G,Q, {v1},0))
nf(= g, e2[z — vi]fvr — nf(=r,, ez — u]fur 1))
= (by substitution)
nf(= g, e2lr — nf(=r,,e1lz —t])])
= (by definition of 7(M1))
nf(=r,, ez — 7(M1)(t)])
= (by definition of 7(M2))
T(M)(T(My)(¢). O
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