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Abstract

Many functional programs with accumulating parameters are contained in the class of
macro tree transducers. We present a program transformation technique that can be used
to solve the efficiency problems due to creation and consumption of intermediate data
structures in compositions of such functions, where classical deforestation techniques fail.

In order to do so, given two macro tree transducers under appropriate restrictions,
we construct a single macro tree transducer that implements the composition of the two
original ones. The imposed restrictions are more liberal than those in the literature on
macro tree transducer composition, thus generalising previous results.

1 Introduction

An important style of writing programs in a functional language is to define new

functions by composition of existing ones. Thus, the result of a function application

is passed as argument to another function. This modular programming technique

of solving an overall problem by combining solutions of partial problems simplifies

the design and verification of programs and encourages reuse. Unfortunately, mod-

ular programs often lack efficiency compared to other—often less understandable—

programs that solve the same tasks. If the created intermediate results are struc-

tured objects—for example lists or trees—their creation and eventual destruction

will consume time and memory space. Furthermore, it is possible that more data

structure traversals are performed than would really be necessary for solving the

overall problem. Thus, one would like to have program transformation techniques

that allow the optimisation of functions written in the modular style by eliminat-

ing intermediate data structures. Several such techniques have been studied in the

literature, e.g., the unfold/fold-technique by Burstall & Darlington (1977), its al-

gorithmic instances supercompilation (Turchin, 1986; Sørensen et al., 1996; Secher

& Sørensen, 1999) and deforestation (Wadler, 1990; Chin, 1994), program calcula-

tion (Malcolm, 1989; Meijer et al., 1991; Sheard & Fegaras, 1993; Hu et al., 1996;

Bird & de Moor, 1997) and shortcut deforestation (Gill et al., 1993; Gill, 1996).
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In this paper we follow an approach for eliminating intermediate results that

is based on the theory of tree transducers (Fülöp & Vogler, 1998). Particularly,

we consider macro tree transducers (for short mtts; Engelfriet, 1980), which are

extended schemes of primitive recursion—allowing simultaneous definition of several

functions and nested function calls in parameter positions—that translate trees over

a ranked alphabet of input symbols into trees over a ranked alphabet of output

symbols. For this translation process an mtt uses functions that have at least rank

one, and a set of rewrite rules. Every function f is defined by pattern matching on

the root symbol σ of its first argument t. The right-hand side of the rule for f at σ

may contain the other arguments of f , output symbols, and recursive function calls

the first arguments of which must be variables that refer to subtrees of t. Since many

typical functions on algebraic data types are defined by such a structural descent,

mtts represent a large class of functional programs using accumulating parameters,

which in the scope of mtts are called context parameters.

For illustration of the problem of intermediate results, consider the following

example. Assume given a representation of arithmetic terms—built from two vari-

ables and the binary operations addition and multiplication—as trees with nullary

constructor symbols A and B and binary constructor symbols + and × (this rep-

resentation corresponds to an algebraic data type in a functional language, e.g.,

data Term = A | B | + Term Term | × Term Term in Haskell-style). Further,

assume given a function pfx for computing the prefix-notation of such a term as

monadic tree of now unary symbols A, B, +, ×, and a nullary ε as end symbol:

(i) : pfx (+(u1, u2), y1) → +(pfx (u1, pfx (u2, y1)))

(ii) : pfx (×(u1, u2), y1) → ×(pfx (u1, pfx (u2, y1)))

(iii) : pfx (A, y1) → A(y1)

(iv) : pfx (B, y1) → B(y1).

In order to compute the prefix-notation of a term t, the rules (i)–(iv) are used to

exhaustively rewrite the initial expression pfx (t, ε).

Now, consider the problem of computing, for a given term as above, a sequence

of instructions for a stack-machine with two registers and instructions for addition

and multiplication (represented as monadic tree, labelled with instructions LOADA,

LOADB , ADD and MUL). Instead of programming a solution for this problem

from scratch, we can solve the task by simply reversing the prefix-notation of the

given term and replacing labels A, B, + and × by LOADA, LOADB , ADD and

MUL, respectively. Hence, we define the following auxiliary function:

(v) : aux(A(v1), z1) → aux(v1, LOADA(z1))

(vi) : aux(B(v1), z1) → aux(v1, LOADB(z1))

(vii) : aux(+(v1), z1) → aux(v1, ADD(z1))

(viii) : aux(×(v1), z1) → aux(v1,MUL(z1))

(ix) : aux(ε, z1) → z1.

The instruction sequence for a given term t can now be computed by compos-

ing the functions pfx and aux, namely by rewriting the composite expression

aux(pfx (t, ε), ε) with rules (i)–(ix).
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However, this modular solution is inefficient, because it creates and consumes an

intermediate result. Depending on the used evaluation strategy, this intermediate

data structure might never exist as a whole, but nevertheless, for all of its nodes

memory cells have to be allocated and later deallocated. Also, even with lazy evalua-

tion, this program performs a superfluous traversal through the intermediate result.

To avoid these inefficiencies, we could instead use the following function defini-

tion:

(x) : ins(+(u1, u2), z1) → ins(u2, ins(u1, ADD(z1)))

(xi) : ins(×(u1, u2), z1) → ins(u2, ins(u1,MUL(z1)))

(xii) : ins(A, z1) → LOADA(z1)

(xiii) : ins(B, z1) → LOADB(z1).

If for a given term t we use rules (x)–(xiii) on ins(t, ε), we will calculate the same

instruction sequence as before with the modular solution, but without creating and

traversing the intermediate data structure, thus requiring less rewrite steps.

Consequently, it would be worthwhile to automatically transform the modular

solution (i)–(ix) into the efficient solution (x)–(xiii). To the best of our knowledge,

techniques such as deforestation and program calculation cannot perform the op-

timisation that we want to achieve here. In particular, classical deforestation fails

due to its well-known problem of not reaching accumulating parameters (Chin,

1994). An approach that is applicable to our example is based on attribute gram-

mars (Knuth, 1968) and was proposed independently by Kühnemann (1997; 1998)

and Correnson et al. (1998; 1999). The idea is to transform the two functions (in

our formalism represented by two restricted mtts) that we want to compose, into at-

tribute grammars (Courcelle & Franchi-Zannettacci, 1982), respectively attributed

tree transducers (Fülöp, 1981), which are abstractions of attribute grammars. If

the first attributed tree transducer fulfils the single-use restriction, which essen-

tially means that every attribute instance in a tree may be used at most once

in calculating the values of other attribute instances, the two transducers can be

composed into a single attributed tree transducer (based on composition results

from (Ganzinger, 1983; Ganzinger & Giegerich, 1984; Giegerich, 1988)). Applying

a construction based on (Franchi-Zannettacci, 1982), this attributed tree trans-

ducer can then be transformed into an mtt, thus giving a functional program for

the composition of the two original functions, but without producing and consum-

ing the intermediate result. This and related techniques of combining results from

the theory of tree transducers for functional program optimisation are presented in

a uniform framework by Kühnemann & Voigtländer (2001). A restricted instance

of attribute grammar composition is also handled by Kakehi et al. (2001), using

a single local rule to eliminate intermediate lists in compositions of map-style list

transformers.

The approach of transformation by composition of attribute grammars does not

work for all mtts, because only restricted mtts can be transformed into attributed

tree transducers. One such restriction is the property of an mtt to be weakly single-

use (Kühnemann, 1998), which roughly speaking means that at every node in the

input tree recursive calls of functions on subtrees are restricted to appear at most
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MAC

ATT

ATTsu ; ATT

MAC su ; MAC wsu

Fig. 1. Indirect composition.

once1. Moreover, in order to obtain a single-use attributed tree transducer—such

that the composition result for attributed tree transducers becomes applicable—

the first mtt has to be further restricted to be single-use, which in addition to

the restriction of being weakly single-use means that context parameters cannot

be copied. The latter restriction is called non-copying. Figure 1 shows the trans-

formation steps that one has to take, where arrows indicate transformations and

the semicolon stands for composition of tree transduction classes. Here, the class

of functions computable by mtts is denoted as MAC , the class of attributed tree

transductions as ATT , and the restrictions single-use and weakly single-use are

indicated by subscripts su and wsu, respectively.

There are several reasons to be interested in a direct construction for composing

mtts without the above indirection. Firstly, there would be benefits for an im-

plementation, because a direct construction could be implemented more efficiently

and because the implementor—e.g., a compiler constructor—could work directly on

functional programs, instead of having to consider the formalism of attribute gram-

mars just for optimisation’s sake. Secondly, a direct construction could produce

better program code than the indirection by several transformations, because—for

the sake of generality—every single program transformation tends to introduce

a certain “ballast” into the program, like, e.g., superfluous function parameters.

Thirdly, a direct composition construction on the level of functional programs is

more accessible to formal efficiency comparisons with other program transforma-

tion techniques. Finally, we want to broaden the applicability of mtt composition

by generalising the result MAC su;MAC wsu ⊆ MAC .

It is well known that one cannot compose two arbitrary mtts, because the class

of macro tree transductions is not closed under composition (Engelfriet & Vogler,

1985). But, we can aim for weaker restrictions on the mtts than necessary so far,

which still allow a composition. The success of this intention is limited if we stick

1 Other restrictions of mtts that allow the transformation into attributed tree transducers are,
e.g., the well-presented restriction (Courcelle & Franchi-Zannettacci, 1982), the attributed-like
restriction (Fülöp & Vogler, 1999) and the restricted-use condition (Kühnemann & Voigtländer,
2001), which generalises the weakly single-use property.
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to the above indirect construction via attributed tree transducers, because then we

can only compose mtts that can be transformed into attributed tree transducers,

which is not always possible as there is a strict inclusion ATT ⊂ MAC (Engelfriet,

1980; Franchi-Zannettacci, 1982). A direct composition construction has no such a

priori limitation. In fact, we prove—with MAC nc being the class of functions com-

putable by non-copying mtts2—the inclusion MAC nc;MAC wsu ⊆ MAC , which is a

generalisation of the result quoted above, because single-use mtts are, by definition,

non-copying. We will observe that the direct composition construction allows us to

further weaken the restriction on the second mtt by requiring the weakly single-use

condition only for those of its functions that have at least one context parameter.

The presented construction is also applicable if one of the two mtts has no context

parameters—i.e., is a top-down tree transducer (Rounds, 1970; Thatcher, 1970; En-

gelfriet, 1975)—and the other one is an unrestricted mtt, thus incorporating into the

new construction two known results (Engelfriet, 1981; Engelfriet & Vogler, 1985).

The direct composition construction together with two post-processing construc-

tions developed by Voigtländer (2001) are then able to transform the above modular

program—rules (i) to (ix)—into the more efficient program of rules (x)–(xiii).

The remainder of this paper is organised as follows. We define necessary notions

in Section 2 and introduce the basic concepts of mtts in Section 3. In Section 4 we

discuss the underlying ideas for the direct composition construction of a non-copying

and a weakly single-use mtt, which is formally given in Section 5. In Section 6 we

consider practical aspects of the direct composition construction, namely a post-

processing phase and an implementation. Section 7 compares our technique with

related approaches for eliminating intermediate results. In Section 8 we discuss

efficiency aspects of our transformation technique, with respect to abstract efficiency

measures and by runtime measurements. In Section 9 we show that a symmetric

composition—a general construction for composing a weakly single-use mtt and

a non-copying one in this order—cannot exist, and give some theoretical results

on mtts. Finally, Section 10 concludes with an outlook for future research. The

correctness proof for the composition construction can be found in the Appendix,

available online as (Voigtländer & Kühnemann, 2003).

2 Preliminaries

We denote by
�

the set of natural numbers including 0, and for n ∈
�

, by [n]

the set {1, . . . , n}. We set
�

+ =
�
\{0}. For a finite, non-empty set S of natural

numbers, we denote by max(S) the maximum of all its elements.

We use several sets of lowercase variables. We denote by U the set {u1, u2, u3, . . .}

of variables, and for p ∈
�

by Up the finite set {u1, . . . , up} ⊆ U ; analogous for V ,

Y , Z and Y ′ = {y′1, y
′
2, y

′
3, . . .}.

For a set S, we denote by S∗ the set of finite sequences of elements of S, where

ε denotes the empty sequence. The power set of a given set S will be denoted by

2 Note that in Theorem 9.6 of this paper MACnc 6⊆ ATT will be shown. Hence, the indirect
construction cannot be used for non-copying mtts.
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P(S). The number of elements of a finite set S will be denoted by |S|. For a set S

and a binary relation � ⊆ S × S, we denote by �
+ the transitive and by �

∗ the

reflexive, transitive closure of �, respectively.

We define substitution over strings (elements of S∗ for some finite set S) as

follows. For a string w ∈ S∗, pairwise different symbols x1, . . . , xn ∈ S, and strings

w1, . . . , wn ∈ S∗ (for some n ∈
�

), we denote by w[xi ← wi, i ∈ [n]] the string

obtained from w by replacing all occurrences of every xi in w by wi. We will also

use the alternative notation w[x1, . . . , xn ← w1, . . . , wn] and appropriate multi-line

notations for long substitutions. We write substitutions left-associative.

A ranked alphabet is a pair (Σ, rankΣ), where Σ is a finite set of symbols and

rankΣ assigns to each of these symbols a natural number, its rank. In the following,

we will drop the rankΣ-function from the denotation and only mention Σ when re-

ferring to a ranked alphabet. For every p ∈
�

, we define Σ(p) = {σ ∈ Σ | rankΣ(σ) =

p}. The rank p of a symbol σ will also be denoted by writing σ(p). For the sake of

brevity, quantifications over a symbol in a ranked alphabet will implicitly quantify

also over the rank of the symbol. E.g., we will write “for every σ ∈ Σ(p)” instead of

“for every p ∈
�

, σ ∈ Σ(p)” and “there exists f ∈ F (r+1)” instead of “there exist

r ∈
�

and f ∈ F (r+1)”. For a ranked alphabet Σ, we denote the set of all its ranks

as rank(Σ) = {p ∈
�
| ∃σ ∈ Σ : rankΣ(σ) = p}.

For a ranked alphabet Σ and a set S disjoint from Σ, we define the set TΣ(S)

of trees over Σ indexed by S as the smallest set T ⊆ (Σ ∪ S ∪ {(, )} ∪ {, })∗ such

that (i) S ⊆ T and (ii) for every σ ∈ Σ(p) and t1, . . . , tp ∈ T : σ(t1, . . . , tp) ∈ T . For

nullary symbols, we simply write α instead of α(). We denote the set TΣ(∅) by TΣ.

Let Σ be a ranked alphabet and X a set of variables, where Σ∩X = ∅. A rewrite

rule over Σ and X is a rule of the form lhs → rhs with lhs, rhs ∈ TΣ(X), such

that the left-hand side lhs does not contain two occurrences of the same variable

and every variable occurring in the right-hand side rhs is also contained in lhs.

A set R of rewrite rules over Σ and X is called a rewrite system (over Σ and

X)3 (Dershowitz & Jouannaud, 1990; Baader & Nipkow, 1998). For every Σ′ ⊇ Σ,

it induces a binary reduction relation ⇒R ⊆ TΣ′ × TΣ′ , such that t ⇒R t′ iff R

contains a rule lhs→ rhs, there is a tree c ∈ TΣ′({x}) (with x /∈ X) that contains

x exactly once, and there exist n ∈
�

, trees t1, . . . , tn ∈ TΣ′ and pairwise different

variables x1, . . . , xn ∈ X such that:

t = c[x← lhs [x1, . . . , xn ← t1, . . . , tn]]

t′ = c[x← rhs[x1, . . . , xn ← t1, . . . , tn]].

A reduction relation ⇒R ⊆ TΣ × TΣ is called confluent, if for every t, t1, t2 ∈ TΣ

with t ⇒∗
R t1 and t ⇒∗

R t2, there exists t′ ∈ TΣ with t1 ⇒∗
R t′ and t2 ⇒∗

R

t′. A reduction relation ⇒R is called terminating, if there is no infinite chain

t1 ⇒R t2 ⇒R t3 ⇒R . . .. If t ⇒∗
R t′ and there is no t′′ with t′ ⇒R t′′, then t′ is

called a normal form of t with respect to ⇒R. If ⇒R is confluent and terminating,

then every tree t ∈ TΣ has a unique normal form, denoted as nf(⇒R, t).

3 When Σ and X are clear from the context, we will only mention R. Note that a rewrite system
over Σ and X is also a rewrite system over Σ′ ⊇ Σ and X′ ⊇ X, if Σ′ ∩ X′ = ∅.
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Let Σ, ∆ and Ω be ranked alphabets. We call a total function τ : TΣ → T∆ a tree

transduction (from TΣ to T∆). We define the composition of two tree transductions

τ1 : TΣ → T∆ and τ2 : T∆ → TΩ, denoted by τ1; τ2, as (τ1; τ2)(t) = τ2(τ1(t)), for

every t ∈ TΣ. Further, we denote the composition of two classes T1 and T2 of tree

transductions by T1; T2 = {τ1; τ2 | τ1 ∈ T1, τ2 ∈ T2}.

Let Σ be a ranked alphabet and S a set disjoint from Σ. We will need the set of

paths in a tree, given by the function paths : TΣ(S) → P((
�

+)∗), which is defined

by structural recursion as follows: (i) if t ∈ Σ(0) ∪ S, then paths(t) = {ε}, and (ii)

if t = σ(t1, . . . , tp) with p ∈
�

+, σ ∈ Σ(p), t1, . . . , tp ∈ TΣ(S), then paths(t) =

{ε} ∪ {iπ | i ∈ [p], π ∈ paths(ti)}.

We will also need the label at a path in a tree, given by the mapping lab :

{(t, π) | t ∈ TΣ(S), π ∈ paths(t)} → Σ ∪ S, defined by: (i) if t ∈ Σ(0) ∪ S, then

lab(t, ε) = t, and (ii) if t = σ(t1, . . . , tp) with p ∈
�

+, σ ∈ Σ(p), t1, . . . , tp ∈ TΣ(S),

then lab(t, ε) = σ and lab(t, iπ) = lab(ti, π) for i ∈ [p] and π ∈ paths(ti). The label

lab(t, ε) is called the root symbol of the tree t.

The subtree at a path in a tree is given by the function sub : {(t, π) | t ∈

TΣ(S), π ∈ paths(t)} → TΣ(S), defined by: (i) sub(t, ε) = t, and (ii) if t =

σ(t1, . . . , tp) with p ∈
�

+, σ ∈ Σ(p), t1, . . . , tp ∈ TΣ(S), then sub(t, iπ) = sub(ti, π)

for i ∈ [p] and π ∈ paths(ti).

We define the height of a tree by the function height : TΣ(S)→
�

as follows: (i) if

t ∈ Σ(0) ∪ S, then height(t) = 0, and (ii) if t = σ(t1, . . . , tp) with p ∈
�

+, σ ∈ Σ(p),

t1, . . . , tp ∈ TΣ(S), then height(t) = 1 + max({height(ti) | i ∈ [p]}). Finally, we

have the notion of size of a tree, defined by the mapping size : TΣ(S)→
�

with: (i)

if t ∈ Σ(0) ∪ S, then size(t) = 1, and (ii) if t = σ(t1, . . . , tp) with p ∈
�

+, σ ∈ Σ(p),

t1, . . . , tp ∈ TΣ(S), then size(t) = 1 +
∑

i∈[p]

size(ti).

3 Macro Tree Transducers

In this section we introduce macro tree transducers and syntactic restrictions for

them, both formally and using examples. Then, we present a new characterisation

relating the class of functions computable by unrestricted macro tree transducers

and the composition of two restricted classes.

3.1 Definitions and Examples

Definition 3.1 (macro tree transducer, RHS )

A macro tree transducer (for short mtt) M is a tuple (F,Σ,∆, e, R) with:

• a ranked alphabet F of states, where F (0) = ∅

• a ranked alphabet Σ of input symbols, where Σ(0) 6= ∅ and F ∩ Σ = ∅

• a ranked alphabet ∆ of output symbols, where ∆(0) 6= ∅ and F ∩∆ = ∅

• an initial expression e ∈ RHS(F,∆, {x}, ∅)

• a set R containing for every f ∈ F (r+1) and σ ∈ Σ(p) exactly one rule of the

form f(σ(u1, . . . , up), y1, . . . , yr)→ rhsf,σ , with rhsf,σ ∈ RHS(F,∆, Up, Yr),
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where for sets X and X ′, the set RHS(F,∆, X,X ′) is the smallest set RHS ⊆

TF∪∆(X ∪X ′) satisfying the following conditions:

• X ′ ⊆ RHS

• for every δ ∈ ∆(q) and φ1, . . . , φq ∈ RHS: δ(φ1, . . . , φq) ∈ RHS

• for every f ∈ F (r+1), x ∈ X , φ1, . . . , φr ∈ RHS: f(x, φ1, . . . , φr) ∈ RHS. 3

Note that R in the above definition is a rewrite system over F ∪Σ∪∆ and U ∪ Y .

A rule of the form f(σ(. . .), . . .)→ . . . is also called a σ-rule. A subtree of the form

f(t, . . .) is referred to as a call of f on t. The first argument of a state f is called

recursion argument, the others are called context parameters. Correspondingly, vari-

ables from U are called recursion variables and variables from Y are called context

variables. Of course, the actual variable names used in mtt rules are not fixed to

come from Up and Yr for some p, r ∈
�

; consistent renaming is allowed. For exam-

ple, we will later use recursion variables from V and context variables from Z for

the second mtt in the composition construction.

Example 3.2 (the functions pfx and aux from the introduction as mtts)

Let Σterm = {+(2),×(2), A(0), B(0)}, ∆list = {+(1),×(1), A(1), B(1), ε(0)} and Ωins =

{ADD(1),MUL(1), LOAD
(1)
A , LOAD

(1)
B , ε(0)}.

We define the mtt Mpfx = ({pfx (2)},Σterm,∆list, epfx , Rpfx ), where Rpfx contains

the rules (i)–(iv) from the introduction, and epfx = pfx (x, ε). We also define the

mtt Maux = ({aux(2)},∆list,Ωins, aux(x, ε), Raux), where Raux contains the rules

(v)–(ix) from the introduction. 3

The semantics of an mtt is a function from trees over the input ranked alphabet

to trees over the output ranked alphabet. It is given by substituting the input tree

for x in the initial expression e of an mtt, and then calculating the normal form

of this expression with respect to the reduction relation induced by the set R of

rules. This normal form exists and is unique, because the rules of an mtt induce a

confluent and terminating reduction relation (cf., e.g., Fülöp & Vogler, 1998).

Definition 3.3 (semantics of an mtt)

The tree transduction induced by an mtt M = (F,Σ,∆, e, R) is the total function

τ(M) : TΣ → T∆ that assigns to every tree t ∈ TΣ the value nf(⇒R, e[x← t]). We

denote the class of tree transductions induced by mtts as MAC . 3

Although the mtts presented here have a more general initial expression than those

used by Fülöp & Vogler (1998)—allowing just the call of some state with fixed con-

text parameters—our tree transduction class MAC coincides with theirs, because

mtts in the two representations can be transformed into each other. Note that the

same needs not be true for restricted classes of tree transductions, because our

representation is more flexible.

Though this paper does not perform formal efficiency considerations, we some-

times informally argue with respect to efficiency. For this purpose we fix lazy eval-

uation as our intended deterministic reduction strategy.
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Example 3.4 (semantics of Mpfx )

We apply the mtt Mpfx from Example 3.2 to the input term +(A,B), i.e., we

calculate the normal form of epfx [x← +(A,B)] with respect to ⇒Rpfx
:

pfx (+(A,B), ε)⇒Rpfx
+(pfx (A, pfx (B, ε)))⇒Rpfx

+(A(pfx (B, ε)))

⇒Rpfx
+(A(B(ε))). 3

We introduce two important syntactic restrictions of mtts (Kühnemann, 1998) and

the corresponding classes of tree transductions induced by such restricted mtts.

Definition 3.5 (non-copying)

An mtt is non-copying, if there is at most one occurrence of every context variable in

the right-hand side of every rule. We denote the class of tree transductions induced

by non-copying mtts as MAC nc. 3

The following property will later be required of the second mtt involved in a compo-

sition, hence we already here define it according to the notational conventions used

for this second mtt, namely with states in G, input symbols in ∆, output symbols

in Ω, recursion variables in V and context variables in Z.

Definition 3.6 (weakly single-use)

An mtt M = (G,∆,Ω, e, R) is weakly single-use, if the following two conditions

hold:

(i) For every δ ∈ ∆(q), j ∈ [q] and g ∈ G, a call of the form g(vj , . . .) occurs in a

right-hand side of at most one δ-rule and there only once.

(ii) For every g ∈ G, the initial expression e contains at most one occurrence of a

call g(x, . . .).

We denote the class of tree transductions induced by weakly single-use mtts as

MACwsu. 3

We also identify mtts that have both of the above properties.

Definition 3.7 (single-use)

An mtt is single-use, if it is both non-copying and weakly single-use. We denote the

class of tree transductions induced by single-use mtts as MAC su. 3

We use some more examples to illustrate the introduced restrictions of mtts.

Example 3.8 (restricted mtts)

1. The mtts Mpfx and Maux from Example 3.2 are both non-copying and weakly

single-use, hence they are also single-use.

2. Let ∆bin = {δ(2), ε(0)} and Nat = {succ(1), zero(0)}. Then the mtt Mcount =

({count(2)},∆bin,Nat , count(x, zero), Rcount) with set of rules

count(δ(u1, u2), y1) → succ(count(u1, count(u2, y1)))

count(ε, y1) → succ(y1)

is single-use. Note that for every t ∈ T∆bin
, we have: height(τ(Mcount)(t)) =

size(t). This statement is an instance of a more general one for arbitrary

ranked alphabets in Construction 9.3.
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3. The mtt Mexp = ({exp(2)},Nat ,Nat , exp(x, zero), Rexp) with set of rules

exp(succ(v1), z1) → exp(v1, exp(v1, z1))

exp(zero, z1) → succ(z1)

is non-copying, but it is not weakly single-use. Note that for every t ∈ TNat ,

we have: height(τ(Mexp)(t)) = 2height(t). This statement can easily be proven

by induction.

4. The mtt Mbin = ({bin(2)},∆bin,∆bin, bin(x, ε), Rbin) with set of rules

bin(δ(v1, v2), z1) → bin(v1, bin(v2, z1))

bin(ε, z1) → δ(z1, z1)

is weakly single-use, but it is not non-copying. Note that for every fully bal-

anced binary tree t ∈ T∆bin
of height h, τ(Mbin)(t) is a fully balanced binary

tree of height 2h, and hence size(τ(Mbin)(t)) = 2(2h+1) − 1. This statement

can easily be proven by induction. 3

Kühnemann & Voigtländer (2001) give further examples and show how functions

on polymorphic data types—such as the well-known Haskell reverse and (++) on

lists—are handled as mtts by using enriched constructor symbols, and how functions

such as map and foldr can be viewed as mtts by using the idea of higher-order

macros (Wadler, 1990).

Another important restriction of mtts is that of having no context parameters

at all, which gives us top-down tree transducers (Rounds, 1970; Thatcher, 1970;

Engelfriet, 1975).

Definition 3.9 (top-down tree transducer)

An mtt is a top-down tree transducer (for short tdtt), if all its states have rank one.

We denote the class of tree transductions induced by tdtts as TOP . 3

Note that no context parameters appear in the rules of a tdtt, hence every tdtt is,

by definition, non-copying.

3.2 A Characterisation

The aim of this paper is to construct for two given mtts—of which the first one is

non-copying and the second one is weakly single-use—a single new mtt that imple-

ments the composition of the two original ones. We give an a priori justification

of the feasibility of this aim by reasoning with the help of other tree transduc-

tion classes (Fülöp, 1981; Kühnemann, 1997), which are not covered in this paper

(ATT , Y IELD and ATTsu denote the classes of attributed tree transductions,

yield-functions and tree transductions induced by single-use attributed tree trans-

ducers, respectively).

Theorem 3.10

MACnc;MACwsu = MAC
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Proof sketch

MACnc;MACwsu

⊆ TOP ;ATTsu;MACwsu (an analogue of Lemma 5.3 in (Kühnemann, 1998))

⊆ TOP ;ATTsu;ATT (Theorem 7.1 in (Kühnemann, 1998))

⊆ TOP ;ATT (Lemma 6.4 in (Kühnemann, 1997))

⊆ TOP ;MAC (cf. Franchi-Zannettacci (1982),

also Lemma 6.1 in (Fülöp & Vogler, 1998))

⊆ MAC (Corollary 4.10 in (Engelfriet & Vogler, 1985))

⊆ TOP ;Y IELD (Theorem 3 in (Engelfriet, 1980))

⊆ MACnc;MACwsu (TOP ⊆ MAC nc;

Example 4.5 in (Engelfriet & Vogler, 1985),

Lemma 6.10 in (Kühnemann, 1997))

The same kind of reasoning can be applied to obtain new results on well-presented

mtts (Courcelle & Franchi-Zannettacci, 1982) and attributed-like mtts (Fülöp &

Vogler, 1999)—namely, MAC nc;MACwp = MAC = MAC nc;MAC al
4—as well as

on classes of macro attributed tree transducers (Kühnemann & Vogler, 1994).

The precise proof for the inclusion MAC nc;MACwsu ⊆ MAC will be given by

presenting an effective composition construction in Subsection 5.1 and proving its

correctness in the Appendix (Voigtländer & Kühnemann, 2003). Before giving this

formal construction, we provide an intuitive explanation of the underlying ideas in

the next section.

4 Ideas of the Direct Composition Construction

Given two mtts M1 (from TΣ to T∆, with rules R1) and M2 (from T∆ to TΩ, with

rules R2) with respective sets of states F and G = {g1, . . . , gµ}, we want to create

an mtt M1;2 (from TΣ to TΩ, with rules R1;2) such that τ(M1;2) = τ(M1); τ(M2).

This aim cannot be achieved in general, but in the following subsections we will

step by step study increasingly weaker restrictions under which it is feasible.

4.1 Translating Right-Hand Sides of M1 with Rules of M2

We first consider the very simple case that both M1 and M2 are tdtts with only one

state (so called homomorphism tree transducers), i.e., F = {f
(1)
1 } and G = {g

(1)
1 }.

Then, the define/instantiate/unfold/fold-strategy (Burstall & Darlington, 1977)

can be used to construct the required M1;2 as a tdtt with exactly one state h,

the basic idea being that of folding nested calls of the form g1(f1(t)) to h(t).

Therefor, M1;2 must define appropriately instantiated rules for the new state h,

namely for every input symbol σ ∈ Σ(p) a rule with left-hand side h(σ(u1, . . . , up))

has to be constructed. Using the facts that the previous should correspond to

4 MACnc;MACwp ⊆ MACnc;MACal ⊆ MACnc;ATT ⊆ TOP ;ATTsu; ATT ⊆ MAC ⊆
TOP ;Y IELD ⊆ MACnc;MACwp, cf. the trivial inclusion MAC wp ⊆ MACal, Lemma 3.18
in (Fülöp & Vogler, 1999) and the construction from Example 4.5 in (Engelfriet & Vogler, 1985).
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g1(f1(σ(u1, . . . , up))) and that a rule f1(σ(u1, . . . , up))→ rhsf1,σ is given in R1, an

unfold-step yields

h(σ(u1, . . . , up))→ g1(rhsf1 ,σ)

as a good candidate. In order to obtain a legal tdtt rule from this candidate, rhsf1,σ

can be translated with g1 by applying further unfold-steps using rules for g1 at

symbols from the intermediate ranked alphabet ∆, and fold-steps as introduced

above. Hence, the actual right-hand side for the rule of h at σ is obtained by

reducing g1(rhsf1 ,σ) with the following rewrite systems:

R2 : g1(δ(. . .))→ rhsg1,δ , ∀δ ∈ ∆

Fold : g1(f1(u)) → h(u)

Note that it will be exactly the applications of the rules from R2 during the transla-

tion of rhsf1,σ with g1 that lead to the elimination of intermediate data structures.

4.2 Pairing of States

If M1 and M2 are tdtts with possibly non-singleton state sets, the strategy from

the previous subsection has to be adjusted, because for each pair of states f ∈ F

and g ∈ G a different new state must be used for folding nested calls of the form

g(f(t)), hence h alone is not enough. The solution is fairly simple by using as states

for the tdtt M1;2 the set of pairs H = {(f, g) | f ∈ F, g ∈ G} and folding calls of

the form g(f(t)) to (f, g)(t). The right-hand side of the rule for such a paired state

(f ′, g′) at an input symbol σ is then obtained by reducing g′(rhsf ′,σ) with R2 and

a new rewrite system Pair that replaces Fold :

R2 : g(δ(. . .))→ rhsg,δ , ∀g ∈ G, δ ∈ ∆

Pair : g(f(u)) → (f, g)(u) , ∀g ∈ G, f ∈ F

The transformation we have described thus is exactly the product construction for

tdtts from the proof of Theorem 2 in (Rounds, 1970). Note that for every rule of

R1, exactly µ = |G| new rules are constructed, i.e., |R1;2| = µ · |R1|.

4.3 Adding Accumulating Parameters to the Producer

— Reaching Accumulating Parameters with Unary States

Since we are interested in composing mtts and not only tdtts, we consider the case

that f ∈ F has a rank greater than one and a call of the form g(f(t, φ1, . . . , φr))

arises from running M1 and M2 independently (M2 is still assumed to be a tdtt,

hence g ∈ G(1)). Following the idea of pairing states, such a nested call should

correspond to a call of (f, g) on t during the computation of M1;2. But it is far from
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trivial how this corresponding call of (f, g) must look like, in particular how the

φ1, . . . , φr should be treated. Simply to pass these context parameters of f to the

state (f, g) is not enough, as the following example shows.

Example 4.1 (passing the context parameters of f unchanged to (f, g) fails)

Assume that R1 contains the rule f(α, y1) → γ(y1) and R2 contains the rule

g(γ(v1))→ g′(v1), giving for t = α the reduction:

g(f(t, φ1))⇒R1 g(γ(φ1))⇒R2 g
′(φ1).

Note that the context parameter φ1 of f appears in the intermediate result ob-

tained by reducing the inner call, and that during the further computation on this

intermediate result a call on φ1 occurs. Such behaviour cannot be modelled by an

mtt M1;2 if we simply want to replace the call g(f(t, φ1)) by (f, g)(t, φ1), because

for doing so, the rule of (f, g) at α would have to be constructed as

(f, g)(α, y1)→ g′(y1) ,

which contains a call of a state on a context variable and thus is inadmissible. 3

In the construction for MAC ;TOP ⊆ MAC from Theorem 4.12 in (Engelfriet &

Vogler, 1985) this problem is solved by holding available for every context parameter

of f its µ translations for all the states g1, . . . , gµ of M2. Accordingly,

g(f(t, φ1, . . . , φr))

is replaced by the call

(f, g)(t, g1(φ1), . . . , gµ(φr)) ,

which will be modelled by a generalised rewrite system Pair below.

During the construction of the rule for a state (f ′, g′) of M1;2 (with f ′ ∈ F (r′+1))

at an input symbol σ ∈ Σ(p), i.e., during the reduction of the right-hand side of

(f ′, g′)(σ(u1, . . . , up), y1,g1 , . . . , yr′,gµ
)→ g′(rhsf ′,σ) ,

a new case can occur, because rhsf ′,σ can additionally to symbols from ∆ and calls

of states from F also contain the context variables y1, . . . , yr′ . Recalling that ev-

ery call of (f ′, g′) is provided—in the y1,g1 , . . . , yr′,gµ
-positions—with precomputed

translations of the context parameters of f ′ with all possible states of G, we just

have to select the correct one, modelled by a rewrite system Pre as given in the

following:

R2 : g(δ(. . .)) → rhsg,δ , ∀g ∈ G, δ ∈ ∆

Pre : g(yk) → yk,g , ∀g ∈ G, yk ∈ Y

Pair : g(f(u, y′1, . . . , y
′
r))→ (f, g)(u, g1(y

′
1), . . . , gµ(y′r)) , ∀g ∈ G, f ∈ F

(r+1)

Here yk and yk,g are treated as nullary symbols, whereas the u, y′1, . . . , y
′
r are vari-

ables.
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Note that in the rules of Pair the construction “reaches” intermediate data struc-

tures in accumulating (context) parameters of the state f , as opposed to classical

deforestation.

4.4 Adding Accumulating Parameters also to the Consumer

— Reaching Accumulating Parameters with Non-unary States

Our aim is to compose two mtts, none of which is a tdtt. Hence, we have to consider

nested calls of the form g(f(t, φ1, . . . , φr), η1, . . . , ηs). Following the discussion from

the previous subsections, such a call will be replaced by a call of the paired state

(f, g) on t, provided with translations of the context parameters φ1, . . . , φr of f with

the µ states of M2. Additionally, (f, g) must clearly keep the context parameters

of the outer call of g ∈ G(s+1), i.e., (f, g) will altogether have r · µ + s context

parameters.

The rule for a state (f ′, g′) (with f ′ ∈ F (r′+1) and g′ ∈ G(s′+1)) at some input

symbol σ ∈ Σ(p) will again be constructed by translating rhsf ′,σ with g′, i.e., by

reducing the right-hand side of:

(f ′, g′)(σ(u1, . . . , up), y1,g1 , . . . , yr′,gµ
, z1, . . . , zs′)→ g′(rhsf ′,σ , z1, . . . , zs′).

During this reduction, we will again apply rules of R2 in order to eliminate in-

termediate data structures, rules of an adapted rewrite system Pre to select the

appropriate translations of f ′’s context parameters with states of M2, and rules of

Pair to perform a pairing of states as suggested above:

R2 : g(δ(. . .), z1, . . . , zs) → rhsg,δ , ∀g ∈ G(s+1), δ ∈ ∆

Pre : g(yk, z1, . . . , zs) → yk,g , ∀g ∈ G(s+1), yk ∈ Y

Pair : g(f(u, y′1, . . . , y
′
r), z1, . . . , zs)→

(f, g)(u, g1(y
′
1, . . .), . . . , gµ(y′r, . . .), z1, . . . , zs) , ∀g ∈ G(s+1), f ∈ F (r+1)

Note that Pair is only partially specified here, as the context parameters of the

g1, . . . , gµ-calls on y′1, . . . , y
′
r are not yet determined.

Also, note that the variables z1, . . . , zs are discarded in the rules of Pre . The

reason is our assumption that the yk,g-parameter of (f ′, g′) already contains the

correct g-translation of the yk-parameter of f ′. For two unrestricted mtts, this

assumption is not feasible, because it might happen that not all calls of g on the

kth context parameter of f ′ have the same parameters. In the next two subsections

we will discuss this problem and restrict the mtts M1 and M2 in such a way that

the above idea of precomputing the translations of context parameters will work.

In order to specify the exact shape of the rules in Pair , we will step by step give

approximations (in the following marked with (*), (**) and (***)) of the effect of

Pair on a concrete situation

g(f(ui, φ1, . . . , φr), η1, . . . , ηs)
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g

f

Σ

y1 yr

η1 ηs

· · ·

· · ·

t =

⇒∗
R1

g

∆

η1 ηs· · ·

φ =

yk

⇒∗
R2

Ω
g′

yk ? ?· · ·

Fig. 2. Can we uniquely determine the values in question mark positions?

with subtrees φ1, . . . , φr of rhsf ′,σ and η1, . . . , ηs being parts of right-hand side ex-

pressions for M1;2 that have been built up during the translation of rhsf ′,σ with g′.

We already know that we should replace such a nested call with a call of (f, g)

on ui, taking as additional arguments the correct translations of the context pa-

rameters of f with all possible states of M2, and the context parameters of g:

(*) (f, g)(ui, g1(φ1, ?, . . . , ?), . . . , gµ(φr, ?, . . . , ?), η1, . . . , ηs).

4.5 Towards Sufficient Conditions for the Composition Construction

What are we supposed to provide in the places of the question marks in (*) ?

Clearly, it should be the context parameters with which the states g1, . . . , gµ are

expected to “arrive” at occurrences of φ1, . . . , φr during computation of the nested

call g(f(ui, φ1, . . . , φr), η1, . . . , ηs) considered above (and thus will clearly depend

on the tree substituted for ui).

However, it is far from obvious, whether we can always provide this information.

So, we better first answer the following question in general (see Fig. 2).

Q : “Given two states f ∈ F (r+1) and g ∈ G(s+1) and some input tree t for M1,

can we for every state g′ of M2 and every context variable yk from y1, . . . , yr

uniquely determine, what will be the context parameters in every occurrence

of a call of g′ on yk during the reduction of g(f(t, y1, . . . , yr), η1, . . . , ηs)?”

To further illustrate the problem, we consider some—rather artificial—examples.

Example 4.2 (positive answer to question Q)

Let Σmon = {A(1), B(1), E(0)}, ∆mon = {α(1), β(1), ε(0)} and consider the mtt M1 =

({f
(2)
1 },Σmon,∆mon, f1(x, ε), R1) with set of rules R1:

(i) : f1(A(u1), y1) → α(f1(u1, y1))

(ii) : f1(B(u1), y1) → f1(u1, β(y1))

(iii) : f1(E, y1) → y1.

Let Ωtree = {ω(2), γ(1), κ(0)} and M2 = ({g
(2)
1 , g

(2)
2 },∆mon,Ωtree, g2(x, κ), R2) with

set of rules R2:
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(iv) : g1(α(v1), z1) → g1(v1, g2(v1, z1))

(v) : g1(β(v1), z1) → γ(z1)

(vi) : g1(ε, z1) → z1
(vii) : g2(α(v1), z1) → z1
(viii) : g2(β(v1), z1) → g2(v1, ω(g1(v1, z1), z1))

(ix) : g2(ε, z1) → z1.

Now, we might ask what will be the context parameters in every occurrence of a

call of g2 on y1 during the reduction of g1(f1(A(B(E)), y1), z1):

g1(f1(A(B(E)), y1), z1)⇒
∗
R1

g1(α(β(y1))
︸ ︷︷ ︸

φ of Fig. 2

, z1)⇒
∗
R2

g1(β(y1), g2(y1, ω(g1(y1, z1), z1)))

Here the answer is unique, because no other calls of g2 on y1 will occur during the

further possible reduction. 3

Example 4.3 (negative answer to question Q)

(a). Consider rules f(ε, y1) → δ(y1, y1) and g(δ(v1, v2)) → ω(g′(v1, ε), g
′(v2, κ)) of

M1 and M2, respectively, giving for t = ε the reduction:

g(f(ε, y1))⇒R1 g(δ(y1, y1))⇒R2 ω(g′(y1, ε), g
′(y1, κ)).

(b). Consider rules f(ε, y1)→ γ(y1) and g(γ(v1))→ g′(v1, g
′(v1, ε)) of M1 and M2,

respectively, giving for t = ε the reduction:

g(f(ε, y1))⇒R1 g(γ(y1))⇒R2 g
′(y1, g

′(y1, ε)).

In both cases the reduction leads to occurrences of calls of g′ on y1 with different

context parameters. 3

Although Example 4.3 shows that in general the answer to question Q is no, we

claim that it can be answered positively if M1 is non-copying and M2 is weakly

single-use (which excludes the above “counterexamples” (a) and (b))—or, trivially,

if one of them is a tdtt—by reasoning as in the following subsection.

4.6 Walking Upwards in Intermediate Results Containing Parameters

— The par-Functions

If M1 is non-copying, then for every tree t ∈ TΣ the normal form φ of f(t, y1, . . . , yr)

contains at most one occurrence of every y1, . . . , yr. Assume that yk occurs at path

πyk
in φ. If, moreover, M2 is weakly single-use, then we can find out the lth context

parameter in every occurrence of a call of state g′ on yk during the reduction of

g(φ, η1, . . . , ηs) by “walking upwards from πyk
in φ” as described by a function parφ

that takes as arguments a path in φ, a state of M2 and a context parameter position

of this state (the initial call hence being parφ(πyk
, g′, l)):

(1) If the given path is ε, then either g′ = g and parφ(ε, g′, l) should deliver the

lth context parameter of g′ = g at the root of φ, i.e. ηl, or g′ 6= g and we

can take some arbitrary dummy context parameter, because no call of g′ will

reach the root of φ during reduction of g(φ, η1, . . . , ηs).
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(2) If the given path is πj ∈ paths(φ) and lab(φ, π) = δ ∈ ∆(q), then there

is at most one possible way, how the path πj can be reached by a call of

state g′, namely by the unique (since M2 is weakly single-use) occurrence of

a g′(vj , . . .)-call in some right-hand side of a δ-rule of M2.

If there is no such call, then we can safely take some dummy symbol for

parφ(πj, g′, l), because then the path πj cannot be reached by a call of state

g′. If however, there is such a call in the right-hand side of a rule

g′′(δ(v1, . . . , vq), z1, . . . , zs′′)→ . . . g′(vj , ψ1, . . . , ψs′) . . . ,

then our sought lth context parameter of calls of g′ reaching the path πj

is essentially ψl, except that it might contain references to the children of

the occurrence of δ (variables v1, . . . , vq) and to context parameters of calls

of g′′ on reaching the occurrence of δ (variables z1, . . . , zs′′). The former are

obtained as the direct subtrees of the occurrence of δ in φ, while the latter

can be computed by using the parφ-function on the path π as in the following:

parφ(πj, g′, l) = ψl[v1, . . . , vq ← sub(φ, π1), . . . , sub(φ, πq),

z1, . . . , zs′′ ← parφ(π, g′′, 1), . . . , parφ(π, g′′, s′′)].

The occurrence of δ can now again be either at the root of φ, i.e. π = ε, or in

the argument of some output symbol of M1 in φ, so we either are in case (1)

or again “walk upwards” in φ using this second case, until finally we reach

the root.

Example 4.4 (walking upwards)

Recall the mtts M1 and M2 from Example 4.2 (which are non-copying and weakly

single-use, respectively), and assume that we are interested in the first context

parameter in a call of g2 on the occurrence of y1 in φ = β(y1), that is, we want to

compute parβ(y1)(1, g2, 1). We know that the only way to have a call of g2 on the

occurrence of y1 at path πj = 1 (i.e., π = ε and j = 1) is via a call of g2 on v1 in the

right-hand side of some β-rule of M2. The only such call occurs in the rule (viii):

g2(β(v1), z1)→ g2(v1, ω(g1(v1, z1), z1)).

Hence, the first context parameter of g2 on y1 can be calculated by:

parβ(y1)(1, g2, 1) = ω(g1(v1, z1), z1)[v1 ← sub(β(y1), 1),

z1 ← parβ(y1)(ε, g2, 1)]

= ω(g1(y1, parβ(y1)(ε, g2, 1)), parβ(y1)(ε, g2, 1)). 3

The informal explanation above Example 4.4 suggests that question Q can be an-

swered with yes. However, this does not immediately help our (static) construction

of M1;2, because an mtt has to work locally and cannot follow our proposed (dy-

namic) procedure of “reduce f(t, y1, . . . , yr) to its normal form φ, check where the

context variables y1, . . . , yr are in φ, and walk your way up from there”.

But, we claim that the above idea can in fact be implemented by introducing

new states for the mtt M1;2 as explained in the next subsection.
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4.7 Introducing New States for Computing Context Parameters

For every two states f and g′ of M1 and M2, and every pair of context parameter

positions k and l of f and g′, respectively, we introduce a new state (kf , lg′) 5 of

M1;2. For every tree t, such a state (kf , lg′) shall compute the lth context parameter

in a call g′(yk, . . .) resulting from a reduction of g(f(t, . . . , yk, . . .), . . .) for some g,

where g is unique (due to our reasoning of “walking upwards in the intermediate

tree, using the weakly single-use property”).

Coming back to (*) in Subsection 4.4, we can then fill the question marks by

using these new states:

(**) (f, g)(ui, g1(φ1, (1f , 1g1)(ui, ?, . . . , ?), . . . , (1f , s1g1
)(ui, ?, . . . , ?)),

. . . ,

gµ(φr , (rf , 1gµ
)(ui, ?, . . . , ?), . . . , (rf , sµgµ

)(ui, ?, . . . , ?)),

η1, . . . , ηs) ,

assuming that the states g1, . . . , gµ of M2 have s1, . . . , sµ context parameters.

But, this produced new question marks, and before we can fill them we have to

consider what context parameters such a new state (kf , lg′) requires, respectively,

how its rules can be constructed6. For every input symbol σ ∈ Σ(p) of M1, we have

to construct a rule

(kf , lg′)(σ(u1, . . . , up), . . .)→ ? ,

aimed at computing the lth context parameter in a call of g′ on yk, resulting from

a reduction of

g(f(σ(u1, . . . , up), . . . , yk, . . .), . . .)

for some (unique) g. Clearly, we should use our knowledge of M1’s rule

f(σ(u1, . . . , up), . . . , yk, . . .)→ rhsf,σ .

If rhsf,σ does not contain yk, then there cannot result a call of g′ on yk from the

reduction, so we are safe to choose some dummy right-hand side for (kf , lg′) at σ.

In the case that rhsf,σ does contain yk, we will reuse the idea of “walking upwards

from the unique occurrence of yk”, namely with a parrhsf,σ
-function. However, since

besides context variables and output symbols, rhsf,σ can also contain recursive

function calls—which were not present in the discussion in the previous subsection—

an appropriate extension to the parrhsf,σ
-function will be necessary. We will discuss

this extension in the next subsection. In the absence of function calls from rhsf,σ ,

we can use the par-functions as introduced so far.

Example 4.5 (walking upwards in a right-hand side without recursive calls)

Consider the mtts M1 and M2 from Example 4.2, but assume the simpler right-

hand side rhsf1,B = β(y1) for rule (ii). If we want to construct the right-hand side

5 This shall not denote indexed integers, rather it is used as a compacter notation for the pair of
pairs ((k, f), (l, g′)).

6 In addition to the µ · |R1| rules for (f, g)-states, R1;2 will contain ≤ µ · |R1| · rmax · smax rules
for (kf , lg′ )-states, where rmax = max(rank(F )) − 1 and smax = max(rank(G)) − 1.
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for (1f1 , 1g2) at B (that is, we are interested in the first context parameter in a call

of g2 on the occurrence of y1 in rhsf1 ,B), we obtain according to Example 4.4:

parrhsf1,B
(1, g2, 1) = ω(g1(y1, parrhsf1,B

(ε, g2, 1)), parrhsf1,B
(ε, g2, 1)) ,

which depends both on the g1-translation of y1 and on the first context parameter

of g2 at the root of rhsf1 ,B . 3

Since in general we do not know, which states—in the previous example g1 and

g2 in ω(g1(y1, parrhsf1,B
(ε, g2, 1)), parrhsf1,B

(ε, g2, 1))—will be concerned, we might

need the information

1. all g-translations of all context parameters of f for every state g of M2

2. all context parameters for every state g of M2 at the root of rhsf,σ (respec-

tively, at the occurrence of f(σ(u1, . . . , up), . . . , yk, . . .))

to compute (kf , lg′) at σ.

Thus, the rule discussed above Example 4.5 will indeed have the form:

(kf , lg′)(σ(u1, . . . , up), y1,g1 , . . . , yr,gµ
, zg1,1, . . . , zgµ,sµ

)→ ? ,

and the definition of par-functions on the empty path ε can be made more precise

by stating for every g′ ∈ G(s′+1) and l ∈ [s′]:

parrhsf,σ
(ε, g′, l) = zg′,l.

Example 4.6 (completing the rule for (1f1 , 1g2) at B, assuming rhsf1 ,B = β(y1))
Continuing the discussion from Example 4.5 we obtain:

parrhsf1,B
(1, g2, 1) = ω(g1(y1, parrhsf1,B

(ε, g2, 1)), parrhsf1,B
(ε, g2, 1))

= ω(g1(y1, zg2,1), zg2,1).

Since (1f1 , 1g2) has the translations of y1 with all states ofM2 as context parameters,

we can use the rewrite system Pre to replace g1(y1, zg2,1) with y1,g1 , and obtain the

following rule:

(1f1 , 1g2)(B(u1), y1,g1 , y1,g2 , zg1,1, zg2,1)→ ω(y1,g1 , zg2,1). 3

Note that—as follows from the reasoning in Subsection 4.6—for every input tree t,

state g′ and context variable yk, there will be at most one state g ∈ G(s+1) such

that reducing g(f(t, . . . , yk, . . .), . . .) leads to a g′(yk, . . .)-call. The result of reduc-

ing (kf , lg′)(t, y1,g1 , . . . , yr,gµ
, zg1,1, . . . , zgµ,sµ

), which shall compute the lth context

parameter of this call of g′ on yk, will then contain only those variables of the

zg1,1, . . . , zgµ,sµ
that are associated with this unique g. However, since for different

input trees t also this g might differ, it is unavoidable for the state (kf , lg′) to have all

the context variables zg1,1, . . . , zgµ,sµ
. Intuitively, in order to get the lth context pa-

rameter of a call g′(yk, . . .) resulting from reduction of g(f(t, . . . , yk, . . .), η1, . . . , ηs),

we have to compute

(kf , lg′)(t, y1,g1 , . . . , yr,gµ
, zg1,1, . . . , zgµ,sµ

)

and replace the zg,1, . . . , zg,s (no other variables will occur from zg1,1, . . . , zgµ,sµ
in

the result) by the η1, . . . , ηs.
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4.8 Walking Upwards in Right-Hand Sides of M1

— Extending the par-Functions

The following example demonstrates the necessity to extend our parφ-functions,

and prepares the ground for this extension in general.

Example 4.7 (walking upwards from a parameter position of a recursive call)

In Examples 4.5 and 4.6 we considered the construction of the right-hand side for

(1f1 , 1g2) at B for the mtts M1 and M2 from Example 4.2, but used a simplified

right-hand side rhsf1 ,B, where no function call occurred. We will now resume this

discussion for the original rhsf1,B = f1(u1, β(y1)).

Recall that in order to build the rule

(1f1 , 1g2)(B(u1), y1,g1 , y1,g2 , zg1,1, zg2,1)→ ? ,

i.e., to find the first context parameter in a call of g2 reaching y1 in rhsf1,B , we

have to start from the unique occurrence of y1 in this right-hand side, which gives

us in analogy to Example 4.5:

parf1(u1,β(y1))(21, g2, 1) = ω(g1(y1, parf1(u1,β(y1))(2, g2, 1)), parf1(u1,β(y1))(2, g2, 1)).

In analogy to Example 4.6, we can later use the rewrite system Pre to replace

g1(y1, . . .) with y1,g1 . For calculating parf1(u1,β(y1))(2, g2, 1), however, we need fur-

ther discussion, because it stands for the context parameter of g2 on reaching the

root of a context parameter of f1, a situation we did not consider so far. But, we

have designed the state (1f1 , 1g2) to compute for instantiated u1 the first context

parameter of g2 on reaching the first context parameter of f1 during a reduction

on f1(u1, . . .) with some state of M2. Hence, we can obtain our needed value for

parf1(u1,β(y1))(2, g2, 1) by calling this state (1f1 , 1g2) on u1, yielding:

(1f1 , 1g2)(B(u1), y1,g1 , y1,g2 , zg1,1, zg2,1)→ ω(y1,g1 , (1f1 , 1g2)(u1, ?, . . . , ?)).

How to fill the context parameter positions of this call will now be discussed in

general. 3

We abstract from the previous example and explain the working of the parφ-function

for a path πj that corresponds to the (j − 1)st context parameter position of a call

of some f ∈ F on some ui ∈ U in φ, i.e., lab(φ, π) = f and lab(φ, π1) = ui. Recall

that parφ(πj, g′, l) shall—modulo reductions with R2 ∪ Pre ∪ Pair—give a right-

hand side expression for M1;2 that computes the lth context parameter in a call of

state g′ reaching the path πj in M1’s right-hand side φ. Since the path πj is the

(j − 1)st context parameter position of a call of f , this can be realised by a call

of ((j − 1)f , lg′) on ui, because this state was designed to compute the lth context

parameter in a call of state g′ reaching the (j−1)st context parameter position of a

call of state f on a given input. In order to do so, the state ((j − 1)f , lg′) has to be

provided with translations of f ’s context parameters—at the particular occurrence

of the call of f at path π in φ—with states of M2, and furthermore, with the context

parameters of M2’s states at this occurrence. The latter ones can be computed by
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parφ-function calls on the path of the occurrence of f in φ. Hence,

parφ(πj, g′, l) = ((j − 1)f , lg′)(ui, . . .︸︷︷︸

nestf

, parφ(π, g1, 1), . . . , parφ(π, gµ, sµ)) ,

still missing the translations of f ’s context parameters (the subtrees of φ in context

parameter positions of the call of f) with states of M2. Actually a (finite!) nesting

of such translations will be necessary, to be discussed at the end of Subsection 4.10.

4.9 Towards the Pair-Rules

Let us now further consider the effect that the rewrite system Pair should have on

g(f(ui, φ1, . . . , φr), η1, . . . , ηs). In particular, we need to fill the question mark slots

of (**) in Subsection 4.7.

Recall that we introduced the calls of (1f , 1g1), . . . , (rf , sµgµ
) on ui in order to

compute the context parameters with which the states g1, . . . , gµ are expected to

“arrive” at φ1, . . . , φr during the reduction of g(f(ui, φ1, . . . , φr), η1, . . . , ηs) for in-

stantiated ui. Further, recall that—by the discussion below Example 4.5—every

state (kf , lg′) ∈ {(1f , 1g1), . . . , (rf , sµgµ
)} expects in the zg1,1, . . . , zgµ,sµ

-positions of

its call on ui the context parameters of all possible states of M2 at the occurrence

of f(ui, φ1, . . . , φr).

However, only those of the translations g1(φ1, . . .), . . . , gµ(φr, . . .) will be needed

during the computation of (**) that actually occur during the reduction of

g(f(ui, φ1, . . . , φr), η1, . . . , ηs)

for instantiated ui. For such a g′ and φk we know by the discussion at the end of

Subsection 4.7, that a call of state (kf , lg′) on the concrete tree substituted for ui

will depend only on those of its zg1,1, . . . , zgµ,sµ
-positions that are associated with

the g fixed above. We also gave the intuition that for these zg,1, . . . , zg,s-positions,

we have to provide the η1, . . . , ηs. The other zg1,1, . . . , zgµ,sµ
-positions—those not

associated with g—are filled with a dummy nullary output symbol nil 7. This leaves

us with the following expression:

(***) (f, g)(ui, g1(φ1, (1f , 1g1)(ui, ?, . . . , ?, nil, . . . , nil, η1, . . . , ηs, nil, . . . , nil),

. . . ,

(1f , s1g1
)(ui, ?, . . . , ?, nil, . . . , nil, η1, . . . , ηs, nil, . . . , nil)),

. . . ,

gµ(φr, (rf , 1gµ
)(ui, ?, . . . , ?, nil, . . . , nil, η1, . . . , ηs, nil, . . . , nil),

. . . ,

(rf , sµgµ
)(ui, ?, . . . , ?, nil, . . . , nil, η1, . . . , ηs, nil, . . . , nil)),

η1, . . . , ηs) ,

still having to fill the y1,g1 , . . . , yr,gµ
-positions of calls of (1f , 1g1), . . . , (rf , sµgµ

).

Again, this will lead to nested translations, as discussed in the next subsection.

7 In Subsection 5.3 we will demonstrate that a seemingly simpler approach—constructing states
with reduced ranks instead—is not feasible.
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4.10 Nesting Translations and Cutting Cycles

For the question mark positions in (***) we have to provide the g1, . . . , gµ-trans-

lations of the φ1, . . . , φr, which might be needed during the computations of the

states (1f , 1g1), . . . , (rf , sµgµ
) on instantiated ui. This looks suspiciously like a cir-

cular construction, because we would use g1(φ1, . . .) within g1(φ1, . . .) and the like.

However, we can “cut” these cycles by keeping track of the nesting (similar to the

unfolding in the construction for ATT ⊆ MAC , cf. Franchi-Zannettacci (1982) and

Fülöp & Vogler (1999)), because the positions where such cyclic dependencies would

occur, can for no possible input tree influence the computation. The intuitive reason

for this is that otherwise we would meet a situation corresponding to the “coun-

terexample” (b) in Example 4.3, like g′(y1, g
′(y1, ε)), which cannot occur, because

we argued that all occurrences of g′(y1, . . .) will have identical context parameters,

provided that M1 is non-copying and M2 is weakly single-use. The formal reason

is established in Lemma A.8 of the Appendix (Voigtländer & Kühnemann, 2003).

The nested translations of the context parameters φ1, . . . , φr of f with the states

g1, . . . , gµ of M2 will be built up with the help of a nestf -function that takes as

arguments the position k ∈ [r] of the context parameter to be translated, a state

g′ ∈ G(s′+1) with which to translate, and a set C ⊆ [r]×G that keeps track of nested

parameter-state-combinations, in order to perform the “cutting” of cycles during

the nesting process as mentioned above. Hence, if (k, g′) ∈ C, then nestf (k, g′, C)

will return the dummy symbol nil, otherwise a call of the form

g′(y′k, (kf , 1g′)(u, . . .
︸︷︷︸

nestf

, zg1,1, . . . , zgµ,sµ
), . . . , (kf , s

′
g′)(u, . . .

︸︷︷︸

nestf

, zg1,1, . . . , zgµ,sµ
)) ,

where the y1,g1 , . . . , yr,gµ
-positions of the (kf , 1g′), . . . , (kf , s

′
g′)-calls contain recur-

sive applications of nestf with the enlarged set of “cut-positions” C ∪ {(k, g′)}.

Abstracting from the concrete ui, φ1, . . . , φr and η1, . . . , ηs in (***), such nestf -

functions will be used in Construction 5.1 to determine the rules for the rewrite

system Pair from Subsection 4.4.

Concluding the discussion of the “walking upwards” in a right-hand side φ of M1

for the case that a call of state f is encountered (cf. Subsection 4.8), the nestf -

function will also take care of preparing the g1, . . . , gµ-translations of the context

parameters of such a call, necessary to obtain parφ(πj, g′, l). Since the lth context

parameter in a call of state g′ on reaching the (j − 1)st context parameter position

of a call of state f cannot depend on the g′-translation of this (j − 1)st context

parameter (cf. the “cutting” discussion), this nesting will not be started with the

empty set of “cut-positions”, but with {(j − 1, g′)}.

5 Composition of Restricted Macro Tree Transducers

In this section we present the construction for composing a non-copying and a

weakly single-use mtt by formally defining the rewrite systems Pre and Pair , and

the nestf - and parφ-functions discussed in the previous section. For illustration, we
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will apply it to the mtts from Example 4.2, and discuss why a seemingly simpler

construction cannot work.

5.1 The Complete Construction

The following construction is essentially Construction 3.2 of Voigtländer (2001),

but described in a simplified way. It is straightforward—though tiresome and thus

omitted here—to establish that it produces a well-defined mtt.

Construction 5.1 (direct composition of restricted mtts)

Let M1 = (F,Σ,∆, e1, R1) and M2 = (G,∆,Ω, e2, R2) be mtts, such that M1 is

non-copying and M2 is weakly single-use. Assume that M1 uses recursion variables

from U and context variables from Y , whereas M2 uses V and Z, respectively.

Let µ = |G| and fix some ordering of the states in G, such that G = {g1, . . . , gµ}.

For n ∈ [µ], let sn ∈
�

be such that gn ∈ G(sn+1). Additionally, let rmax =

max(rank(F )) − 1 and let nil ∈ Ω(0) be some arbitrary output symbol and ZG =

{zg1,1, . . . , zg1,s1 , . . . , zgµ,1, . . . , zgµ,sµ
}.

Then, the components of the mttM1;2 = (H,Σ,Ω, e1;2, R1;2) are obtained as follows:

• H = {(f, g)(r·µ+s+1) | f ∈ F (r+1), g ∈ G(s+1)}

∪ {(kf , lg)
(r·µ+|ZG|+1) | f ∈ F (r+1), g ∈ G(s+1), k ∈ [r], l ∈ [s]}

• e1;2 = nf(⇒R2∪Pair , e2[x← e1])

• R1;2 contains:

— for every f ∈ F (r+1), g ∈ G(s+1) and σ ∈ Σ(p), the rule:

(f, g)(σ(u1, . . . , up), y1,g1 , . . . , yr,gµ
, z1, . . . , zs)

→ nf(⇒R2∪Pre∪Pair , g(rhsf,σ , z1, . . . , zs)) ,

— for every f ∈ F (r+1), g ∈ G(s+1), k ∈ [r], l ∈ [s] and σ ∈ Σ(p), the rule:

(kf , lg)(σ(u1, . . . , up), y1,g1 , . . . , yr,gµ
, zg1,1, . . . , zgµ,sµ

)

→ nf(⇒R2∪Pre∪Pair , %) ,

where % = nil, if rhsf,σ does not contain the context variable yk;

otherwise % = parrhsf,σ
(πyk

, g, l), where πyk
∈ paths(rhsf,σ) is the path of

the unique occurrence of yk in rhsf,σ (notice that M1 is non-copying).

The rewrite systems Pre (over G ∪ Yrmax
∪ {y

(0)
k,g | k ∈ [rmax], g ∈ G} and Z) and

Pair (over F ∪G ∪H ∪ {nil} and {u} ∪ Y ′ ∪Z) used above are defined as follows:

Pre : g(yk, z1, . . . , zs) → yk,g , ∀g ∈ G(s+1), k ∈ [rmax]

Pair : g(f(u, y′1, . . . , y
′
r), z1, . . . , zs)→

(f, g)(u, nestf (1, g1, ∅), . . . , nestf (r, gµ, ∅), z1, . . . , zs)

[zg,1, . . . , zg,s ← z1, . . . , zs]

[zg1,1, . . . , zgµ,sµ
← nil, . . . , nil] , ∀g ∈ G(s+1), f ∈ F (r+1)

There are no critical pairs (Dershowitz & Jouannaud, 1990) in R2 ∪ Pre ∪ Pair ,
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hence the reduction relation ⇒R2∪Pre∪Pair is confluent. Since the rewrite rules in

R2 ∪ Pre ∪ Pair can be interpreted as rules of an auxiliary mtt (which uses state

set G to translate right-hand sides of M1 into right-hand sides of M1;2), it is also

terminating. Hence, unique normal forms with respect to ⇒R2∪Pre∪Pair exist.

For every f ∈ F (r+1), the function

nestf : [r]×G×P([r]×G)→ TG∪H∪{nil}({u} ∪ Y
′
r ∪ ZG)

is defined as follows. For every k ∈ [r], g′ ∈ G(s′+1) and C ⊆ [r]×G:

• nestf (k, g′, C) = nil ,

if (k, g′) ∈ C.

• nestf (k, g′, C) =

g′(y′k,(kf , 1g′)(u, nestf (1, g1, C ∪ {(k, g′)}), . . . , nestf (r, gµ, C ∪ {(k, g′)}),

zg1,1, . . . , zgµ,sµ
),

. . . ,

(kf , s
′
g′)(u, nestf (1, g1, C ∪ {(k, g′)}), . . . , nestf (r, gµ, C ∪ {(k, g′)}),

zg1,1, . . . , zgµ,sµ
)) ,

if (k, g′) /∈ C.

Using the nestf -functions we additionally define for every φ ∈ RHS(F,∆, U, Y )

the function

parφ : {(π, g′, l) | π ∈ paths(φ), lab(φ, π) /∈ U, g′ ∈ G(s′+1), l ∈ [s′]}

→ TF∪G∪H∪∆∪Ω(U ∪ Y ∪ ZG)

by induction on the prefix-order of paths in φ as follows. For every g′ ∈ G(s′+1) and

l ∈ [s′]:

• parφ(ε, g′, l) = zg′,l

• For every j ∈
�

+, πj ∈ paths(φ) with lab(φ, πj) /∈ U , we define parφ(πj, g′, l)

by case distinction on lab(φ, π) as follows:

lab(φ, π) = δ for some δ ∈ ∆(q) and j ∈ [q]:

If, with g′′ ∈ G(s′′+1) and ψ1, . . . , ψs′ ∈ RHS(G,Ω, Vq, Zs′′), the only oc-

currence of a g′(vj , . . .)-call in the δ-rules of the weakly single-use mtt M2

looks as follows:

g′′(δ(v1, . . . , vq), z1, . . . , zs′′)→ . . . g′(vj , ψ1, . . . , ψs′) . . . ,

then:

parφ(πj, g′, l) = ψl[v1, . . . , vq ← sub(φ, π1), . . . , sub(φ, πq),

z1, . . . , zs′′ ← parφ(π, g′′, 1), . . . , parφ(π, g′′, s′′)].

If no such call exists in the δ-rules of M2, then parφ(πj, g′, l) = nil.
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lab(φ, π) = f for some f ∈ F (r+1), 1 ≤ j − 1 ≤ r and lab(φ, π1) = ui ∈ U :

parφ(πj, g′, l)

= ((j − 1)f , lg′)(u, nestf (1, g1, {(j − 1, g′)}), . . . , nestf (r, gµ, {(j − 1, g′)}),

zg1,1, . . . , zgµ,sµ
)

[u ← ui,

y′1, . . . , y
′
r ← sub(φ, π2), . . . , sub(φ, π(r + 1)),

zg1,1, . . . , zgµ,sµ
← parφ(π, g1, 1), . . . , parφ(π, gµ, sµ)].

The following main theorem—stating the correctness of the previous construction—

is proven as Theorem A.16 in the Appendix (Voigtländer & Kühnemann, 2003).

Theorem 5.2 (correctness of Construction 5.1)

τ(M1); τ(M2) = τ(M1;2)

Note that in Construction 5.1 we used only condition (i) of the weakly single-

use restriction for M2 from Definition 3.6 and this only for states of M2 with

rank greater than one (consider that parφ is only defined for triples (π, g′, l) where

g′ is non-unary). In fact, we could generalise the weakly single-use property in

Definition 3.6 by dropping condition (ii) and requiring condition (i) only for states g

that do have context parameters. This would require no change to Construction 5.1

or to the proofs in (Voigtländer & Kühnemann, 2003)! The informal explanations

from Section 4, however, would be more involved and less intuitive for such a

generalised class. That is why we kept to the stronger restriction weakly single-use

of Kühnemann (1998) and only mention the possible generalisation here.

Further, note that we used the non-copying restriction of M1 and the weakly

single-use restriction of M2 only in the construction of rules for the (kf , lg)-states.

Since no such states are created if one of the two original mtts is a tdtt, the com-

position construction is also applicable if M1 or M2 is a tdtt (and the other one

is an unrestricted mtt). In these two special cases, Construction 5.1 corresponds

to Transformation 11 in (Kühnemann, 1999) (if M1 is a tdtt), respectively, to the

construction in the proof of Theorem 4.12 in (Engelfriet & Vogler, 1985) (if M2 is

a tdtt).

5.2 Calculating an Example

As an example we now present the application of Construction 5.1 to the two mtts

from Example 4.2. In order to make explicit the positions where the dummy symbol

nil is used—indicating that these positions will not influence the computation—

we add nil to the output ranked alphabet, instead of using some existing nullary

symbol as we usually would do.

Example 5.3 (applying the direct composition construction)

Consider M1 and M2 from Example 4.2. Since M1 is non-copying and M2 is weakly

single-use, we can apply Construction 5.1 to obtain the mttM1;2 = (H,Σmon,Ωtree∪

{nil(0)}, e1;2, R1;2) with components as follows (where µ = 2, s1 = s2 = 1, rmax = 1

and ZG = {zg1,1, zg2,1}):
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• H = {(f1, g1)(4), (f1, g2)(4)} ∪ {(1f1 , 1g1)
(5), (1f1 , 1g2)

(5)}

• Pre contains the rules: g1(y1, z1)→ y1,g1

g2(y1, z1)→ y1,g2 .

• Pair contains the rules:

g1(f1(u, y
′
1), z1)→ (f1, g1)(u, nestf1(1, g1, ∅), nestf1(1, g2, ∅), z1)

[zg1,1, zg2,1 ← z1, nil]

= (f1, g1)(u, g1(y
′
1, (1f1 , 1g1)(u, nil, g2(y

′
1, (1f1 , 1g2)(u, nil, nil, z1, nil)),

z1, nil)),

g2(y
′
1, (1f1 , 1g2)(u, g1(y

′
1, (1f1 , 1g1)(u, nil, nil, z1, nil)), nil,

z1, nil)),

z1)

g2(f1(u, y
′
1), z1)→ (f1, g2)(u, nestf1(1, g1, ∅), nestf1(1, g2, ∅), z1)

[zg1,1, zg2,1 ← nil, z1]

= (f1, g2)(u, g1(y
′
1, (1f1 , 1g1)(u, nil, g2(y

′
1, (1f1 , 1g2)(u, nil, nil, nil, z1)),

nil, z1)),

g2(y
′
1, (1f1 , 1g2)(u, g1(y

′
1, (1f1 , 1g1)(u, nil, nil, nil, z1)), nil,

nil, z1)),

z1).

• e1;2 = nf(⇒R2∪Pair , g2(x, κ)[x ← f1(x, ε)]), with

g2(x, κ)[x ← f1(x, ε)] = g2(f1(x, ε), κ)

⇒Pair (f1, g2)(x, g1(ε, (1f1 , 1g1)(x, nil, g2(ε, (1f1 , 1g2)(x, nil, nil, nil, κ)),

nil, κ)),

g2(ε, (1f1 , 1g2)(x, g1(ε, (1f1 , 1g1)(x, nil, nil, nil, κ)), nil,

nil, κ)),

κ)

⇒∗
R2

(f1, g2)(x, (1f1 , 1g1)(x, nil, (1f1 , 1g2)(x, nil, nil, nil, κ), nil, κ),

(1f1 , 1g2)(x, (1f1 , 1g1)(x, nil, nil, nil, κ), nil, nil, κ),

κ).

• For the rules in R1;2, we compute only two examples here:

1. We compute the rule for (f1, g1) at A:

(f1, g1)(A(u1), y1,g1 , y1,g2 , z1) → nf(⇒R2∪Pre∪Pair , g1(rhsf1,A, z1)), with

g1(rhsf1 ,A, z1) = g1(α(f1(u1, y1)), z1)

⇒R2 g1(f1(u1, y1), g2(f1(u1, y1), z1))

⇒Pair (f1, g1)(u1, g1(y1, (1f1 , 1g1)(u1, nil, g2(y1, (1f1 , 1g2)(u1, nil, nil,

g2(f1(u1, y1), z1), nil)),

g2(f1(u1, y1), z1), nil)),

g2(y1, (1f1 , 1g2)(u1, g1(y1, (1f1 , 1g1)(u1, nil, nil,

g2(f1(u1, y1), z1), nil)), nil,

g2(f1(u1, y1), z1), nil)),

g2(f1(u1, y1), z1))

⇒∗
Pre (f1, g1)(u1, y1,g1 , y1,g2 , g2(f1(u1, y1), z1))
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⇒Pair (f1, g1)(u1, y1,g1 , y1,g2 ,

(f1, g2)(u1, g1(y1, (1f1 , 1g1)(u1, nil, g2(y1, (1f1 , 1g2)(u1,

nil, nil, nil, z1)),

nil, z1)),

g2(y1, (1f1 , 1g2)(u1, g1(y1, (1f1 , 1g1)(u1,

nil, nil, nil, z1)), nil,

nil, z1)),

z1))

⇒∗
Pre (f1, g1)(u1, y1,g1 , y1,g2 , (f1, g2)(u1, y1,g1 , y1,g2 , z1)).

2. We compute the rule for (1f1 , 1g2) at B:

(1f1 , 1g2)(B(u1), y1,g1 , y1,g2 , zg1,1, zg2,1)

→ nf(⇒R2∪Pre∪Pair , parrhsf1,B
(21, g2, 1)) , with

parrhsf1,B
(21, g2, 1) = parf1(u1,β(y1))(21, g2, 1)

= ω(g1(v1, z1), z1)[v1, z1 ← y1, parf1(u1,β(y1))(2, g2, 1)]

= ω(g1(v1, z1), z1)[v1 ← y1,

z1 ← (1f1 , 1g2)(u, nestf1(1, g1, {(1, g2)}),

nestf1(1, g2, {(1, g2)}), zg1,1, zg2,1)

[u, y′1 ← u1, β(y1),

zg1,1 ← parf1(u1,β(y1))(ε, g1, 1),

zg2,1 ← parf1(u1,β(y1))(ε, g2, 1)]]

= ω(g1(v1, z1), z1)[v1 ← y1,

z1 ← (1f1 , 1g2)(u, g1(y
′
1, (1f1 , 1g1)(u, nil, nil,

zg1,1, zg2,1)),

nil, zg1,1, zg2,1)

[u, y′1, zg1,1, zg2,1 ← u1, β(y1), zg1,1, zg2,1]]

= ω(g1(v1, z1), z1)[v1 ← y1,

z1 ← (1f1 , 1g2)(u1, g1(β(y1), (1f1 , 1g1)( u1, nil, nil,

zg1,1, zg2,1)),

nil, zg1,1, zg2,1)]

= ω(g1(y1, (1f1 , 1g2)(u1, g1(β(y1), (1f1 , 1g1)(u1, nil, nil, zg1,1, zg2,1)),

nil, zg1,1, zg2,1)),

(1f1 , 1g2)(u1, g1(β(y1), (1f1 , 1g1)(u1, nil, nil, zg1,1, zg2,1)),

nil, zg1,1, zg2,1))

⇒Pre ω(y1,g1 , (1f1 , 1g2)(u1, g1(β(y1), (1f1 , 1g1)(u1, nil, nil, zg1,1, zg2,1)),

nil, zg1,1, zg2,1))

⇒R2 ω(y1,g1 , (1f1 , 1g2)(u1, γ((1f1 , 1g1)(u1, nil, nil, zg1,1, zg2,1)),

nil, zg1,1, zg2,1)).
Note the correspondences between this calculation and the informal ex-

planations in Example 4.7.

Altogether, we get the following set of rules:

(f1, g1)(A(u1), y1,g1 , y1,g2 , z1) → (f1, g1)(u1, y1,g1 , y1,g2 , (f1, g2)(u1, y1,g1 , y1,g2 , z1))

(f1, g1)(B(u1), y1,g1 , y1,g2 , z1) → (f1, g1)(u1, γ((1f1 , 1g1)(u1, nil, y1,g2 , z1, nil)),

y1,g2 , z1)



28 J. Voigtländer and A. Kühnemann

(f1, g1)(E, y1,g1 , y1,g2 , z1) → y1,g1

(f1, g2)(A(u1), y1,g1 , y1,g2 , z1) → z1
(f1, g2)(B(u1), y1,g1 , y1,g2 , z1) → (f1, g2)(u1, γ((1f1 , 1g1)(u1, nil, y1,g2 , nil, z1)),

y1,g2 , z1)

(f1, g2)(E, y1,g1 , y1,g2 , z1) → y1,g2

(1f1 , 1g1)(A(u1), y1,g1 , y1,g2 , zg1,1, zg2,1) → (1f1 , 1g1)(u1, nil, y1,g2 ,

(f1, g2)(u1, y1,g1 , y1,g2 , zg1,1), zg1,1)

(1f1 , 1g1)(B(u1), y1,g1 , y1,g2 , zg1,1, zg2,1) → (1f1 , 1g2)(u1,

γ((1f1 , 1g1)(u1, nil, nil, zg1,1, zg2,1)),

nil, zg1,1, zg2,1)

(1f1 , 1g1)(E, y1,g1 , y1,g2 , zg1,1, zg2,1) → zg1,1

(1f1 , 1g2)(A(u1), y1,g1 , y1,g2 , zg1,1, zg2,1) → (1f1 , 1g2)(u1, y1,g1 , nil,

(f1, g2)(u1, y1,g1 , y1,g2 , zg1,1), zg1,1)

(1f1 , 1g2)(B(u1), y1,g1 , y1,g2 , zg1,1, zg2,1) → ω(y1,g1 , (1f1 , 1g2)(u1,

γ((1f1 , 1g1)(u1, nil, nil, zg1,1, zg2,1)),

nil, zg1,1, zg2,1))

(1f1 , 1g2)(E, y1,g1 , y1,g2 , zg1,1, zg2,1) → zg2,1.

The fact that the positions where nil was introduced above do not influence the

computation—i.e., that for every possible input, the output tree computed by

M1;2 will contain no nil-symbols—is discussed on pages 22–24 of (Voigtländer &

Kühnemann, 2001) by analysing the different types of occurrences of nil. 3

5.3 Exploring Alternatives

Regarding the nil-symbols that are introduced by the Pair -rules, e.g., into expres-

sion (***) in Subsection 4.9, the reader may wonder why we do not instead intro-

duce refined states (g, kf , lg′) with reduced ranks, and use Pair -rules of the form:

g(f(u, y′1, . . . , y
′
r), z1, . . . , zs)→

(f, g)(u, g1(y
′
1, (g, 1f , 1g1)(u, nil, . . . , gµ(y′r, . . .), z1, . . . , zs),

. . . ,

(g, 1f , s1g1
)(u, nil, . . . , gµ(y′r, . . .), z1, . . . , zs)),

. . . ,

gµ(y′r, (g, rf , 1gµ
)(u, g1(y

′
1, . . .), . . . , nil, z1, . . . , zs),

. . . ,

(g, rf , sµgµ
)(u, g1(y

′
1, . . .), . . . , nil, z1, . . . , zs)),

z1, . . . , zs).

The intuition might be that such a state (g, kf , lg′) would—in contrast to the

state (kf , lg′) introduced at the beginning of Subsection 4.7—not need all the

zg1,1, . . . , zgµ,sµ
-positions as context parameters, because the relevant g at the end

of Subsection 4.7 would be fixed. However, we will now use an example to show

that such a construction is not feasible, because determining the rules for such

(g, kf , lg′)-states would lead to new problems.

Assume that for the composition of the mtt Mcount from Example 3.8 with a
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weakly single-use mtt containing (in R2) the rules

g1(succ(v1), z1) → g2(v1, γ2(z1))

g2(succ(v1), z1) → g3(v1, γ3(z1))

g3(succ(v1), z1) → g1(v1, γ1(z1)) ,

we want to construct the rule for state (g1, 1count, 1g3) at δ. Since the unique oc-

currence of y1 in rhscount,δ = succ(count(u1, count(u2, y1))) is in the first context

parameter position of a call of count on u2, we would have to construct—according

to the idea in Subsection 4.8—some (g, 1count, 1g3)-call on u2, i.e., the sought rule

should have the form:

(g1, 1count, 1g3)(δ(u1, u2), y1,g1 , y1,g2 , y1,g3 , z1)→ (?, 1count, 1g3)(u2, . . .).

But how can we decide which g to use in the question mark position? It should be the

state with which the inner count-call (on u2) in rhscount,δ is reached. Clearly, since

we are trying to construct a rule for (g1, 1count, 1g3), we can use the knowledge that

the reduction on rhscount,δ is started with g1. But still, the necessary information

depends on the input and hence cannot be determined statically. For example, for

the input u1 = ε the count(u2, y1)-call is reached with g3:

g1(rhscount,δ [u1 ← ε], z1)

⇒Rcount
g1(succ(succ(count(u2, y1))), z1)

⇒∗
R2

g3(count(u2, y1), γ3(γ2(z1))) ,

whereas for the instantiation u1 = δ(ε, ε) it is reached with g2:

g1(rhscount,δ [u1 ← δ(ε, ε)], z1)

⇒∗
Rcount

g1(succ(succ(succ(succ(count(u2, y1))))), z1)

⇒∗
R2

g2(count(u2, y1), γ2(γ1(γ3(γ2(z1))))).

As pointed out by one referee, this problem can be solved by equipping the mtt M1;2

with the feature of regular look-ahead (Engelfriet & Vogler, 1985) to determine the

relevant g for every instantiation of the recursion variables.

To achieve this in a functional programming setting, one would either have to

compute the regular look-ahead information for every subtree of the input tree once

and for all and annotate the tree accordingly, or to simulate the regular look-ahead

feature by recomputing the necessary information whenever needed (e.g., with test

trees, cf. Theorem 4.21 in (Engelfriet & Vogler, 1985)). The former strategy would

run contrary to our aim of eliminating intermediate results, while the latter strat-

egy can necessitate a significant amount of recomputations by considering subtrees

repeatedly, and thus can even worsen the runtime complexity in some cases.

In contrast, lazy evaluation ensures that no superfluous computations are per-

formed by the mtt resulting from Construction 5.1. Even though the rules for

(kf , lg′)-states might contain recursive calls of which not only those zg1,1, . . . , zgµ,sµ
-

parameter positions associated with one particular g are non-nil, for every concrete

input only a subset of the context parameters is relevant and hence required under

call-by-need (cf. the end of Subsection 4.7).
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6 Practical Aspects

After the rather artificial example in Subsection 5.2, let us begin this section with

a more practical example, namely the one coming from the introduction.

Example 6.1 (composition of the mtts for pfx and aux from the introduction)

Composition of the mttsMpfx andMaux from Example 3.2 yields the mttMpfx ;aux =

(H,Σterm,Ωins, epfx ;aux, Rpfx ;aux) with H = {(pfx , aux)(3), (1pfx , 1aux)(3)}, set of

rules Rpfx ;aux:

(i) : (pfx , aux)(+(u1, u2), y, z) → (pfx , aux)(u1, (pfx , aux)(u2, y,

(1pfx , 1aux)(u1, ε, ADD(z))), ADD(z))

(ii) : (pfx , aux)(×(u1, u2), y, z) → (pfx , aux)(u1, (pfx , aux)(u2, y,

(1pfx , 1aux)(u1, ε,MUL(z))),MUL(z))

(iii) : (pfx , aux)(A, y, z) → y

(iv) : (pfx , aux)(B, y, z) → y

(v) : (1pfx , 1aux)(+(u1, u2), y, z) → (1pfx , 1aux)(u2, ε,

(1pfx , 1aux)(u1, ε, ADD(z)))

(vi) : (1pfx , 1aux)(×(u1, u2), y, z) → (1pfx , 1aux)(u2, ε,

(1pfx , 1aux)(u1, ε,MUL(z)))

(vii) : (1pfx , 1aux)(A, y, z) → LOADA(z)

(viii) : (1pfx , 1aux)(B, y, z) → LOADB(z) ,

and epfx ;aux = (pfx , aux)(x, (1pfx , 1aux)(x, ε, ε), ε).

Note that above only the last two ε-symbols—in epfx ;aux—are “real” εs, while all

the others are dummy nil-symbols that were replaced by ε. 3

6.1 Post-processing

The mtt Mpfx ;aux constructed in Example 6.1 looks rather complicated. In partic-

ular, it is not quite the optimised program that we promised in the introduction.

The reason is twofold. Firstly, we observe that the construction introduces context

parameters that are superfluous, in the sense that they will never (for no possible

input tree) influence the output generated by a state. This is the case for parameter

z of state (pfx , aux) and for parameter y of state (1pfx , 1aux). Secondly, the state

(pfx , aux) never really performs any actual computation. No matter on which input

tree it is called, it will always just project on its first context parameter. We call

a state that always projects on one and the same context parameter a copy-state,

because this phenomenon is similar to superfluous data traversals due to copy rules

of attribute grammars (Correnson et al., 1999).

The first problem is caused by the need for the composition construction to be

as general as possible. There exist more complicated mtts where the additionally

created context parameters are really needed. However, the presence of these super-

fluous context parameters does not influence the efficiency of our constructed mtts

if lazy evaluation is used and we take the number of reduction steps as efficiency

measure. Nevertheless, we still want to get rid of them, because they obscure the
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programs and, moreover, do influence the efficiency if more detailed measures are

used, such as taking into account the cost of allocating memory for representing

function closures.

The second problem is more serious as it leads to superfluous traversals through

the input data structure and so contradicts our aim of optimising functional pro-

grams by eliminating intermediate data structures.

In our example Mpfx ;aux it is pretty obvious how to solve the two problems, but

in general both, superfluous context parameters and copy-states, are more difficult

to detect. Voigtländer (2001) developed two mechanisable constructions (based on

computing finite fixpoints) for post-processing and optimising mtts obtained from

the composition construction, which allow to detect and remove all superfluous

context parameters and copy-states, respectively.

Example 6.2 (post-processing)

Consider the mtt Mpfx ;aux from Example 6.1.

Construction 4.8 from (Voigtländer, 2001) detects that the second context param-

eter of (pfx , aux) and the first context parameter of (1pfx , 1aux) will never influence

the output computed by these states, hence their ranks can be reduced (this is a

kind of useless variable elimination).

Then, Construction 4.17 from (Voigtländer, 2001) detects that the state (pfx , aux)

always projects on its remaining context parameter, hence it can be discarded, sim-

plifying the initial expression.

As result we obtain the mtt M ′
pfx ;aux = (H ′,Σterm,Ωins, e

′
pfx ;aux, R

′
pfx ;aux) with

H ′ = {(1pfx , 1aux)′(2)}, set of rules R′
pfx ;aux:

(v)’ : (1pfx , 1aux)′(+(u1, u2), z) → (1pfx , 1aux)′(u2, (1pfx , 1aux)′(u1, ADD(z)))

(vi)’ : (1pfx , 1aux)′(×(u1, u2), z) → (1pfx , 1aux)′(u2, (1pfx , 1aux)′(u1,MUL(z)))

(vii)’ : (1pfx , 1aux)′(A, z) → LOADA(z)

(viii)’ : (1pfx , 1aux)′(B, z) → LOADB(z) ,

and e′pfx ;aux = (1pfx , 1aux)′(x, ε). 3

Note that the final program obtained in the previous example indeed corresponds

to the optimised program of rules (x)–(xiii) in the introduction. Strictly speak-

ing, the elimination of copy-states is sound only for computations on finite trees,

because when used with infinite data structures—as they are possible in lazy func-

tional languages—it can transform non-terminating programs into terminating ones

(which we do not consider an obstacle for automation, for further discussion see

Voigtländer, 2001).

6.2 Implementation in the Haskell+ System

Construction 5.1 has been implemented in the Haskell+ program transformation

system (Lescher, 1999; Höff et al., 2001). As an example for applying the system

we consider the following program.
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Example 6.3 (Haskell+)

begindata Data

data List = A List | B List | E

enddata

beginmag App [Mac,Mat,Su,Swp,Tl,Wp,Wsu,Xlin,Xnd,Ylin,Ynd]

input Data

syn app :: List -> List -> List

app (A u) y = A (app u y)

app (B u) y = B (app u y)

app E y = y

endmag

The above program defines a Haskell data type List and a function app that com-

putes concatenation on the List type. It contains special keywords like begindata,

endmag, input and syn that are used in the Haskell+ language to specify ranked al-

phabets (in begindata–enddata blocks) and tree transducers (in beginmag–endmag

blocks). The list behind the “beginmag App” statement is an enumeration of prop-

erties that were recognised by the analysing phase of our system. In particular, the

list items Mac, Ylin and Wsu tell us that we have an mtt (without initial expression;

see below) that is non-copying and weakly single-use.

Thus, the construction presented in Subsection 5.1 is applicable to produce the

rules for the states (app, app) and (1app, 1app), which are denoted by app_app and

par_1app_1app in our system. If instructed to perform this composition of App with

itself, the Haskell+ system introduces a new mtt App_App into the output program:

{-# RULES "COMPOSITION" forall u y1’ z1.

app (app u y1’) z1 = app_app u (app y1’ (par_1app_1app u E z1)) z1

#-}

beginmag App_App [Mac,Mat,Su,Wp,Wsu,Xlin,Xnd,Ylin]

input Data

syn app_app :: List -> List -> List -> List

syn par_1app_1app :: List -> List -> List -> List

app_app (A u1) y1 z1 = A (app_app u1 y1 z1)

app_app (B u1) y1 z1 = B (app_app u1 y1 z1)

app_app E y1 z1 = y1

par_1app_1app (A u1) y1 z1 = par_1app_1app u1 E z1

par_1app_1app (B u1) y1 z1 = par_1app_1app u1 E z1

par_1app_1app E y1 z1 = z1

endmag

Also, the system outputs—in a special comment above the resulting mtt—an equa-

tion that can be used as rewrite rule in order to take advantage of the composition

transformation. Note that the equation’s right-hand side contains an occurrence of

the state app (originating from the second of the two composed mtts), because its

left-hand side is more general than just a composite of two mtts’ initial expressions,

in that it is not only variable over the input tree u, but also over the context pa-

rameters y1’ and z1. This equation corresponds to the rewrite system Pair from

Construction 5.1. Its correctness can be justified by appealing to statement II(a)i

in Lemma A.15 of (Voigtländer & Kühnemann, 2003).
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An optimising compiler would have to detect appropriate places in the program

where such an equation produced by the composition construction can be applied.

By using the form of a rule pragma for the Glasgow Haskell Compiler (Peyton Jones

et al., 2001), this task is left to the built-in simplifier.

The Haskell+ system also implements post-processing steps as mentioned in the

previous subsection. Applying these to the mtt App_App yields a simplified mtt

App_App’ and further rule pragmas:

{-# RULES "REMOVE SUPERFLUOUS CONTEXT PARAMETERS" forall u y1 z1.

app_app u y1 z1 = app_app’ u y1

#-}

{-# RULES "REMOVE SUPERFLUOUS CONTEXT PARAMETERS" forall u y1 z1.

par_1app_1app u y1 z1 = par_1app_1app’ u z1

#-}

beginmag App_App’ [Mac,Mat,Su,Swp,Tl,Wp,Wsu,Xlin,Xnd,Ylin,Ynd]

input Data

syn app_app’ :: List -> List -> List

syn par_1app_1app’ :: List -> List -> List

app_app’ (A u1) y1 = A (app_app’ u1 y1)

app_app’ (B u1) y1 = B (app_app’ u1 y1)

app_app’ E y1 = y1

par_1app_1app’ (A u1) z1 = par_1app_1app’ u1 z1

par_1app_1app’ (B u1) z1 = par_1app_1app’ u1 z1

par_1app_1app’ E z1 = z1

endmag

{-# RULES "ELIMINATE COPY-STATES" forall u z1.

par_1app_1app’ u z1 = z1

#-}

Applying the equations introduced in the rule pragmas from left to right, we get

the following calculation:

app (app u y1’) z1

= (by rule "COMPOSITION")

app_app u (app y1’ (par_1app_1app u E z1)) z1

= (by rules "REMOVE SUPERFLUOUS CONTEXT PARAMETERS")

app_app’ u (app y1’ (par_1app_1app’ u z1))

= (by rule "ELIMINATE COPY-STATES")

app_app’ u (app y1’ z1)

Since the defining equations that were constructed for app_app’ are the same as

those for app, this corresponds to a well-known optimising transformation, namely

making use of the associativity of the concatenation function. 3

We would also like to integrate the presented composition construction and related

techniques into an optimising functional compiler, without the need for user inter-

action. First results of implementing an analysis phase to detect mtts in Haskell

source programs (without annotations as in Haskell+) and a simple transformation

to compose tdtts only are promising (Reuther, 2002), but much remains to be done.
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7 Related Work on Eliminating Intermediate Results

In this section we give qualitative comparisons of our mtt composition technique

with classical deforestation and shortcut deforestation.

7.1 Classical Deforestation

In order to facilitate the comparison, we give a description of classical deforesta-

tion (Wadler, 1990; Chin, 1994) tailored to mtts, which has also been implemented

in the Haskell+ system. Note that mtts may be defined using nesting of terms in

context parameter positions and hence are not treeless programs as required for

proving termination of Wadler’s original deforestation algorithm. This problem can

be solved by abstracting context parameters using let-expressions explicitly (Hamil-

ton & Jones, 1992) or implicitly (Kühnemann, 1999). We instead give a direct pre-

sentation along the lines of the define/instantiate/unfold/fold-strategy (Burstall &

Darlington, 1977) for mtts as described in Subsections 4.1 and 4.2.

Construction 7.1 (classical deforestation for mtts)

Let M1 = (F,Σ,∆, e1, R1) and M2 = (G,∆,Ω, e2, R2) be (unrestricted) mtts. De-

forestation does not create an mtt, but a program consisting of the set of functions

HDef = {(f, g)(r+s+1) | f ∈ F (r+1), g ∈ G(s+1)} ,

the expression

eDef = nf(⇒R2∪Fold , e2[x← e1]) ,

and the set RDef , containing for every f ∈ F (r+1), g ∈ G(s+1) and σ ∈ Σ(p) the rule:

(f, g)(σ(u1, . . . , up), y1, . . . , yr, z1, . . . , zs)→ nf(⇒R2∪Fold , g(rhsf,σ , z1, . . . , zs)).

The rewrite system Fold (over F ∪G∪HDef and {u}∪Y ′∪Z) used above is defined

as follows:

Fold : g(f(u, y′1, . . . , y
′
r), z1, . . . , zs)→

(f, g)(u, y′1, . . . , y
′
r, z1, . . . , zs) , ∀g ∈ G(s+1), f ∈ F (r+1)

The reduction relation⇒R2∪Fold is confluent and terminating, hence unique normal

forms exist. Now, we claim that for every t ∈ TΣ:

nf(⇒R2 , e2[x← nf(⇒R1 , e1[x← t])]) = nf(⇒RDef ∪R1∪R2 , eDef [x← t]).

We do not prove the claim here, but we note that eDef and RDef correspond exactly

to the result of classical deforestation for the expression e2[x ← e1] and the pro-

gram R1 ∪R2, except that the deforestation algorithm would construct only those

functions in HDef that are really needed for evaluating eDef and hence sometimes

delivers a smaller program.
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Example 7.2 (classical deforestation for the introductory example)

Consider the mttsMpfx andMaux from Example 3.2. According to Construction 7.1,

we obtain HDef = {(pfx , aux)(3)} and Fold contains the rule:

aux(pfx (u, y′1), z1)→ (pfx , aux)(u, y′1, z1).

Then, eDef = (pfx , aux)(x, ε, ε) and RDef contains the rules:

(pfx , aux)(+(u1, u2), y1, z1) → (pfx , aux)(u1, pfx (u2, y1), ADD(z1))

(pfx , aux)(×(u1, u2), y1, z1) → (pfx , aux)(u1, pfx (u2, y1),MUL(z1))

(pfx , aux)(A, y1, z1) → aux(y1, LOADA(z1))

(pfx , aux)(B, y1, z1) → aux(y1, LOADB(z1)).

Note that here deforestation removed only parts of the intermediate result, namely

those that occurred “outside” topmost recursive calls in the original rules Rpfx . This

can be seen in the following derivation of the deforested program for input +(A,B):

(pfx , aux)(+(A,B), ε, ε)

⇒RDef
(pfx , aux)(A, pfx (B, ε), ADD(ε))

⇒RDef
aux(pfx (B, ε), LOADA(ADD(ε)))

⇒Rpfx
aux(B(ε), LOADA(ADD(ε)))

⇒Raux
aux(ε, LOADB(LOADA(ADD(ε))))

⇒Raux
LOADB(LOADA(ADD(ε))) ,

where the underlined parts have not been eliminated. 3

The reason why classical deforestation does not reach intermediate results “inside”

context parameters, whereas mtt composition does, lies in the different treatment of

the y′1, . . . , y
′
r by the Fold - and Pair -rules, respectively. While deforestation simply

copies them without manipulation, our composition construction sends the states

of M2 into these context parameters of M1, by Pair -rules of the following form:

g(f(u, y′1, . . . , y
′
r), z1, . . . , zs)→ (f, g)(u, g1(y

′
1, . . .), . . . , gµ(y′r, . . .), z1, . . . , zs).

On the other hand, classical deforestation (using explicit or implicit let-abstractions)

is applicable to a wider class of programs than just to mtts like our construction.

A more formal comparison between the compositions TOP ;MAC ⊆ MAC and

MAC ;TOP ⊆ MAC and classical deforestation is drawn by Kühnemann (1999)

and Höff (1999).

7.2 Shortcut Deforestation

Shortcut deforestation achieves elimination of intermediate results by expressing

producers and consumers with certain higher-order, polymorphic combinators, the

composition of which can be transformed by foldr/build- (Gill et al., 1993),

foldr/augment- (Gill, 1996) or cata/augment-rules (Johann, 2001).

In the framework of mtt composition, this means that the computation performed

by the states of the consuming mtt M2 needs to be expressed as a catamorphism

that is tupled (in order to capture mutual recursion) and higher-order (in order to

capture context parameters). Such a representation can be synthesized from the
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rules of M2 in a systematic way. On the other hand, all output symbols would

need to be abstracted uniformly from the rules of the producing mtt M1 in a

polymorphic way. But this is problematic, because parts of the produced output

can be “hidden” in the context parameters. One solution would be to prepare those

parts for abstraction via an additional traversal, which is dismissed already by

Gill (1996), because subsequent removal of the traversal introduced thus cannot be

guaranteed. The alternative would be to use the generalisation augment of build,

substituting specific values in place of nullary symbols. However, also this strategy

fails, e.g., for a non-copying mtt with rules

app′(A(u1), y1, y2) → A(app′(u1, y2, y1))

app′(B(u1), y1, y2) → B(app′(u1, y2, y1))

app′(ε, y1, y2) → y1 ,

where the swapping of context parameters in every step prevents us from knowing

beforehand which of the two is to be substituted at the end of the output list.

Hence, the effect to eliminate intermediate results in accumulating parameters as

accomplished by mtt composition cannot be achieved by shortcut deforestation in

general. If no context parameters at all are present—i.e., we are dealing with tdtts

only—shortcut deforestation and tree transducer composition correspond to each

other (Jürgensen & Vogler, 2001).

Note that Svenningsson (2002) disputes the above use of higher-order catamor-

phisms for shortcut deforestation, because it introduces suspended function calls.

He proposes a destroy/unfoldr-rule, which however handles accumulating pa-

rameters only for consumers of intermediate lists, and hence also does not achieve

deforestation inside accumulating parameters as mtt composition does.

On the other hand, there are also functions that form no mtts, but can be ex-

pressed using the above mentioned polymorphic combinators for the different ap-

proaches to shortcut deforestation.

8 Efficiency Considerations

We discuss efficiency aspects of our transformation technique, by motivating work

on formally proving improvements with respect to abstract efficiency measures, and

by comparing actual runtimes of programs transformed with mtt composition and

with the methods covered in the previous section.

8.1 Motivation for Formal Efficiency Analysis

We have seen two practical examples (in the introduction and in Example 6.3)

for which our approach of eliminating intermediate results yields a program that

performs fewer call-by-need reduction steps to produce the final output than the

original program. However, this needs not to be the case in general.

Example 8.1 (possible loss of efficiency)

Continuing the example from the introduction, consider the mtt M ′
pfx ;aux from

Example 6.2, but name the state (1pfx , 1aux)′ as ins. Assume that we want to count
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how many ADD-, how many MUL- and how many LOAD-instructions occur in

an instruction sequence produced by ins for some term t. This can be done by

computing

e = ic(ins(t, ε), zero, zero, zero) ,

with a state ic that uses three context parameters to accumulate the numbers,

as defined in the mtt Mic = ({ic(4)},Ωins,Nat ∪ {ω(3)}, ic(x, zero, zero, zero), Ric)

with the following set of rules Ric:

ic(ADD(v1), z1, z2, z3) → ic(v1, succ(z1), z2, z3)

ic(MUL(v1), z1, z2, z3) → ic(v1, z1, succ(z2), z3)

ic(LOADA(v1), z1, z2, z3) → ic(v1, z1, z2, succ(z3))

ic(LOADB(v1), z1, z2, z3) → ic(v1, z1, z2, succ(z3))

ic(ε, z1, z2, z3) → ω(z1, z2, z3).

Composition of M ′
pfx ;aux with Mic, and post-processing as in Subsection 6.1, yields

that e can be replaced by

e′ = ω(icA(t, zero), icM (t, zero), icL(t, zero)) ,

with set of rules Rins,ic:

icA(+(u1, u2), z1) → succ(icA(u1, icA(u2, z1)))

icA(×(u1, u2), z1) → icA(u1, icA(u2, z1))

icA(A, z1) → z1
icA(B, z1) → z1
icM (+(u1, u2), z2) → icM (u1, icM (u2, z2))

icM (×(u1, u2), z2) → succ(icM(u1, icM (u2, z2)))

icM (A, z2) → z2
icM (B, z2) → z2
icL(+(u1, u2), z3) → icL(u1, icL(u2, z3))

icL(×(u1, u2), z3) → icL(u1, icL(u2, z3))

icL(A, z3) → succ(z3)

icL(B, z3) → succ(z3) ,

where icA, icM and icL abbreviate (1ins, 1ic)
′, (1ins, 2ic)

′ and (1ins, 3ic)
′, respec-

tively (the quote signs stem from the post-processing).

Notice that on the one hand, the transformed expression e′ indeed avoids the

creation of the intermediate result produced in the original expression e. But on

the other hand, evaluation of e performed only one traversal over t (with ins) and

one traversal over the intermediate result of same size (with ic), whereas evaluation

of e′ performs three traversals over t (with icA, icM and icL). 3

In the light of the previous example it is important to develop decision procedures

that determine when mtt composition should be applied, i.e., when Construction 5.1

is guaranteed to improve the efficiency of a program. For the cases that one of the in-

volved mtts is a tdtt, such a systematic study was begun by Kühnemann (1999) and

Höff (1999), and continued using a more general approach by Voigtländer (2002a).

The analysis technique from the latter paper also scales for the case that both
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involved mtts use context parameters. Hence, it can be used to prove sufficient

conditions under which Construction 5.1 produces a program that performs fewer

call-by-need reduction steps to reach normal form than the original program. The

development of such criteria is work in progress. The post-processing phase never

leads to an efficiency deterioration, but it would be useful to characterize cases

where it enables an actual improvement.

Voigtländer (2002b) proposes an alternative composition construction that pro-

duces circular programs instead of mtts and avoids the problem of multiple traver-

sals (as in Example 8.1) through tupling. However, this lazy composition algorithm

does not handle mutually recursive functions, and the costs incurred by tupling

make formal efficiency considerations more difficult.

8.2 Measurements

In order to demonstrate the efficiency gains realised by our technique in practice,

we perform measurements for several examples. For each example, we compare

execution times for multiple runs of different program versions with varying in-

put sizes. The program versions considered are: (i) the original program, (ii) the

program obtained by applying mtt composition, i.e. Construction 5.1, (iii) the pro-

gram obtained from (ii) by additionally applying post-processing as discussed in

Subsection 6.1, (iv) the program obtained from the original one by applying clas-

sical deforestation as presented in Construction 7.1, and (v) the program obtained

by applying shortcut deforestation, where the first alternative discussed in Subsec-

tion 7.2 is used to abstract parts of the intermediate result inside context parameters

via an additional traversal. To use the augment-alternative for (v) would make no

difference for the examples considered here.

The different program versions are coded as ordinary Haskell source, compiled

with the Glasgow Haskell Compiler (version 5.04.1, optimisation level -O) and run

on a Sun Ultra 10 workstation (300MHz, 256MB). The runtimes (in seconds) shown

in the measurement tables below are split into the time spent for actual expression

evaluation (the first summand) and the time spent on garbage collection (the sec-

ond summand) as obtained from the statistics produced using the runtime system

option -s. The given execution times include the test frame with generation of

input data and consumption of final output. This is unavoidable, because a more

detailed cost centre profiling—to separate the execution times for the tested algo-

rithms from their test frame—would corrupt the precision of the measured garbage

collection times considerably.

Of the six examples that we consider, three have already occurred in the paper:

Tables 1–3 contain measurements for the example from the introduction, Exam-

ple 6.3 and Example 8.1. Table 4 covers an interesting variation of Example 8.1, in

which the final output is only partially demanded. Tables 5 and 6 cover examples

on standard Haskell lists as opposed to tree structures.

The measurements for the introductory example aux(pfx (t, ε), ε) on fully bal-

anced binary trees of different heights h in Table 1 show a considerable runtime im-

provement by mtt composition, in particular after post-processing has been applied
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Table 1. aux(pfx (t, ε), ε), n runs with size(t) = 2h+1 − 1

n × h: 60000 × 5 2000 × 10 500 × 12 60 × 15 2 × 20

original 2.6+0.1=2.7 2.8+0.3=3.1 2.7+1.1=3.8 2.6+6.0=8.6 3.0+10.1=13.1
compos. 2.4+0.1=2.5 2.5+0.1=2.6 2.5+0.1=2.6 2.5+2.2=4.7 2.6+ 1.9= 4.5
+post-p. 1.8+0.0=1.8 1.8+0.1=1.9 1.8+0.1=1.9 1.8+1.9=3.7 1.9+ 1.9= 3.8
deforest. 2.5+0.1=2.6 2.8+0.3=3.1 2.8+0.9=3.7 2.8+5.7=8.5 3.0+10.1=13.1
shortcut 1.6+0.1=1.7 1.6+0.2=1.8 1.7+0.4=2.1 1.7+3.3=5.0 1.8+ 6.2= 8.0

Table 2. app (app l l) l, n runs with size(l) = s

n × s: 40000 × 100 4000 × 1000 2000 × 2000 1000 × 4000 800 × 5000

original 6.5+0.1=6.6 6.5+0.2=6.7 6.6+0.3=6.9 6.7+0.2= 6.9 6.9+3.8=10.7
compos. 5.6+0.1=5.7 5.7+0.1=5.8 5.7+0.1=5.8 5.8+0.1= 5.9 5.9+0.1= 6.0
+post-p. 5.2+0.1=5.3 5.4+0.1=5.5 5.3+0.2=5.5 5.4+0.1= 5.5 5.4+0.1= 5.5
deforest. 5.3+0.1=5.4 5.4+0.1=5.5 5.4+0.1=5.5 5.5+0.1= 5.6 5.7+0.1= 5.8
shortcut 8.1+0.2=8.3 8.3+0.2=8.5 8.5+0.2=8.7 8.2+5.7=13.9 8.0+5.7=13.7

(yielding the function ins from the introduction). As indicated in Example 7.2, only

minimal parts of the intermediate tree can be eliminated by classical deforestation,

resulting in the observation of almost no runtime improvement. The performance

of the program produced by shortcut deforestation is on a par with that of the

program produced by our techniques for relatively small input trees, but for larger

input trees the shortcut deforested program has a considerably higher garbage col-

lection overhead.

The measurements in Table 2, where the original expression is a left-associative

concatenation of three identical lists using the function app from Example 6.3, show

about the same runtime improvement by our approach and by classical deforesta-

tion, whereas the shortcut deforestation technique decreases the performance in

this example.

Table 3 gives the runtimes measured for the differently transformed versions of

ic(ins(t, ε), zero, zero, zero) from the previous subsection on fully balanced binary

trees of varying heights h. While no significant change in the runtime behaviour is

observed for classical and shortcut deforestation, our technique increases the time

spent in expression evaluation for the reasons indicated in Example 8.1. Interest-

ingly though, for large input trees the garbage collection times become dominant,

such that then the elimination of the intermediate result pays off, even at the price

of introducing an additional traversal.

An interesting variation of Example 8.1 can be obtained by considering the case

that the final output needs not to be computed to its full normal form, but instead

only a part of this output is demanded by the program context in which it occurs.
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Table 3. ic(ins(t, ε), zero, zero, zero), n runs with size(t) = 2h+1 − 1

n × h: 60000 × 5 2000 × 10 500 × 12 60 × 15 2 × 20

original 2.3+0.1=2.4 2.4+0.3=2.7 2.5+0.6=3.1 2.3+4.6=6.9 2.7+9.2=11.9
compos. 5.3+0.2=5.5 5.7+0.2=5.9 5.7+2.9=8.6 5.7+2.9=8.6 6.3+3.1= 9.4
+post-p. 4.0+0.1=4.1 4.2+0.1=4.3 4.4+1.5=5.9 4.4+2.2=6.6 4.9+2.4= 7.3
deforest. 2.3+0.1=2.4 2.4+0.2=2.6 2.6+0.5=3.1 2.5+4.4=6.9 2.6+9.3=11.9
shortcut 2.3+0.1=2.4 2.5+0.2=2.7 2.6+0.6=3.2 2.5+4.5=7.0 2.7+9.3=12.0

Table 4. pr2(ic(ins(t, ε), zero, zero, zero)), n runs with size(t) = 2h+1 − 1

n × h: 60000 × 5 2000 × 10 500 × 12 60 × 15 2 × 20

original 1.6+0.0=1.6 1.6+0.2=1.8 1.6+0.7=2.3 1.5+4.2=5.7 1.6+9.3=10.9
compos. 1.8+0.0=1.8 1.9+0.1=2.0 2.0+0.1=2.1 2.3+0.1=2.4 2.4+0.1= 2.5
+post-p. 0.9+0.0=0.9 0.9+0.0=0.9 1.1+0.0=1.1 1.3+0.0=1.3 1.6+0.0= 1.6
deforest. 1.5+0.1=1.6 1.6+0.2=1.8 1.6+0.7=2.3 1.5+4.1=5.6 1.6+9.2=10.8
shortcut 1.7+0.0=1.7 1.7+0.2=1.9 1.7+0.6=2.3 1.6+4.1=5.7 1.7+9.4=11.1

This can be simulated by consuming the output with a projection function pr2 that

has the following defining rule:

pr2(ω(x1, x2, x3))→ x2.

Table 4 contains the runtime measurements for the thus adapted example and

shows that then the program obtained by mtt composition plus post-processing

outperforms all the other program versions, because it needs only one traversal

over the input to compute the demanded part of the final output.

As an example for applying our technique on standard Haskell lists—as opposed

to trees over ranked alphabets—consider the following function definitions:

enum :: Int -> [Int] -> [Int]

enum 0 ys = ys

enum (x+1) ys = enum x (x:ys)

even :: [Int] -> [Int] odd :: [Int] -> [Int]

even [] = [] odd [] = []

even (x:xs) = x:(odd xs) odd (x:xs) = even xs

The initial expression enum m [] can be used to enumerate in ascending order

all the non-negative integers that are smaller than a given one, by accumulating

them in the second parameter. By treating “x:” as a special constructor sym-

bol, the function enum together with this initial expression can be regared as an

mtt (cf. Kühnemann & Voigtländer, 2001). Likewise, the mutually recursive unary

functions even and odd—selecting every other element of a list—form a tdtt. The
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Table 5. even (enum m []), n runs

n × m: 50000 × 100 10000 × 500 5000 × 1000 2000 × 2500 1000 × 5000

original 2.7+0.1=2.8 2.7+0.2=2.9 2.5+0.4=2.9 2.6+0.8=3.4 2.7+1.5=4.2
compos. 1.4+0.1=1.5 1.4+0.1=1.5 1.4+0.2=1.6 1.4+0.5=1.9 1.6+0.8=2.4
+post-p. 1.4+0.1=1.5 1.4+0.1=1.5 1.4+0.2=1.6 1.4+0.5=1.9 1.6+0.8=2.4
deforest. 2.7+0.1=2.8 2.7+0.2=2.9 2.6+0.4=3.0 2.7+0.7=3.4 2.6+1.5=4.1
shortcut 1.4+0.1=1.5 1.4+0.1=1.5 1.3+0.3=1.6 1.3+0.6=1.9 1.3+1.0=2.3

modular program even (enum m [])—enumerating all the non-negative even in-

tegers smaller than m—thus represents the composition of an mtt with a tdtt, using

an intermediate list as “glue”. The Haskell+ system currently does not implement

the transformation of programs on standard lists, hence the measurements in Ta-

ble 5 were obtained from hand-transformed program versions. They show that our

technique and shortcut deforestation achieve a comparable efficiency improvement

over the original program and the result of classical deforestation. Note that the

second and the third line of the table contain identical measurements, because post-

processing as described in Subsection 6.1 is usually only necessary in cases where

none of the two mtts involved in the composition is a tdtt.

Such a case emerges by a variation of the previous example, the aim being to

again enumerate the non-negative even integers smaller than a given m, but to

additionally assemble the integers previously discarded by odd towards the end of

the output list. This is achieved by enriching each of the functions even and odd

with an accumulating parameter, yielding an mtt consisting of the following two

functions:

even’ :: [Int] -> [Int] -> [Int] odd’ :: [Int] -> [Int] -> [Int]

even’ [] zs = zs odd’ [] zs = zs

even’ (x:xs) zs = x:(odd’ xs zs) odd’ (x:xs) zs = even’ xs (x:zs)

The measurements for the differently transformed versions of the new program

even’ (enum m []) [] in Table 6 show a solid improvement by our technique af-

ter post-processing, whereas classical deforestation has almost no effect and shortcut

deforestation even leads to an efficiency deterioration. This failure of shortcut de-

forestation is mainly due to garbage collection overheads, probably caused by the

introduction of a sequence of suspended function calls as discussed by Svennings-

son (2002).

9 Tree Transducer Theory Results

In Subsection 5.1 we have presented a construction that composes a non-copying

mtt and a weakly single-use one into a single mtt. It is natural to ask whether

these two restrictions also work the other way round, i.e., whether we also have

MACwsu;MAC nc ⊆MAC . We will show that this is not the case by giving a coun-

terexample. In fact, we will even show the stronger result MAC su;MACnc 6⊆ MAC .
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Table 6. even’ (enum m []) [], n runs

n × m: 50000 × 100 10000 × 500 5000 × 1000 2000 × 2500 1000 × 5000

original 3.8+0.2=4.0 3.8+0.3=4.1 3.9+0.5=4.4 4.0+1.2=5.2 3.9+2.3=6.2
compos. 4.3+0.2=4.5 4.3+0.2=4.5 4.2+0.4=4.6 4.2+0.9=5.1 4.2+1.7=5.9
+post-p. 3.4+0.1=3.5 3.2+0.2=3.4 3.3+0.3=3.6 3.3+0.5=3.8 3.3+1.0=4.3
deforest. 3.9+0.1=4.0 3.8+0.3=4.1 3.9+0.4=4.3 4.1+1.0=5.1 4.1+2.1=6.2
shortcut 3.9+0.2=4.1 3.9+0.5=4.4 3.9+0.8=4.7 4.0+2.0=6.0 4.3+3.7=8.0

Firstly, we quote a classical result on mtts (Theorem 3.24 in (Engelfriet & Vogler,

1985)), namely that the heights of their output trees are exponentially bounded by

the heights of their input trees.

Lemma 9.1 (exponential height-height bound for mtts)

Let M = (F,Σ,∆, e, R) be an mtt. There exists a constant c ∈
�

such that

height(τ(M)(t)) ≤ cheight(t) for every t ∈ TΣ.

The negative result can now be shown by counterexample.

Theorem 9.2 (a symmetric composition construction cannot exist)

MAC su;MACnc 6⊆ MAC

Proof

Consider the mtts Mcount and Mexp from Example 3.8, which are single-use and

non-copying, respectively, and assume the existence of an mtt M such that τ(M) =

τ(Mcount); τ(Mexp). Then, for every t ∈ T∆bin
, height(τ(M)(t)) = 2size(t) holds

by the statements in items 2 and 3 of Example 3.8. Taking for every h ∈
�

, for t

the fully balanced binary tree of height h over the ranked alphabet ∆bin, we get

size(t) = 2h+1 − 1 and thus height(τ(M)(t)) = 2(2h+1−1). Hence, the height of

the output tree is double exponential in the height of the input tree, contradicting

Lemma 9.1.

Results of the same style as Lemma 9.1—relating input- and output-height or -

size—are also available for restricted mtts (and will be summarised in a table below),

but not yet for the class of tree transductions induced by non-copying mtts. It

would be useful to know such a bound, because—as demonstrated in the proof of

Theorem 9.2—these kinds of results can help in reasoning about the expressiveness

of various classes of tree transducers.

By using the composition result MAC nc;MACwsu ⊆ MAC , we are going to

show that for non-copying mtts the output-size is exponentially bounded by the

input-height. In order to do so, we construct for every ranked alphabet ∆ a weakly

single-use mtt M∆ that computes the sizes of trees over ∆ as natural numbers in

monadic representation over the ranked alphabet Nat .



Composition of functions with accumulating parameters 43

Table 7. Input-Output Boundedness for Classes of Tree Transductions

MAC : output-height exponentially bounded by input-height
MACnc : output-size exponentially bounded by input-height
MACwsu : output-height linearly bounded by input-size
MAC su : output-size linearly bounded by input-size
TOP : output-height linearly bounded by input-height

Construction 9.3 (counting symbols in a tree using a weakly single-use mtt)

Let ∆ be a ranked alphabet. We construct the weakly single-use mtt M∆ =

({count(2)},∆,Nat , count(x, zero), R∆), where for every δ ∈ ∆(p) the set R∆ con-

tains the following rule:

count(δ(u1, . . . , up), y1)→ succ(count(u1, count(u2, . . . count(up, y1) . . .))).

By a straightforward induction—to be found in (Voigtländer, 2001)—we can show

that for every t ∈ T∆: height(τ(M∆)(t)) = size(t).

Example 9.4

For the ranked alphabet ∆bin, we obtain the mtt Mcount in Example 3.8. 3

Theorem 9.5 (exponential size-height bound for non-copying mtts)

Let Mnc = (F,Σ,∆, e, R) be a non-copying mtt. There exists a constant c ∈
�

such

that size(τ(Mnc)(t)) ≤ cheight(t) for every t ∈ TΣ.

Proof

Since Mnc is non-copying and M∆ is weakly single-use, there exists—by Con-

struction 5.1 and Theorem 5.2—an mtt M such that τ(M) = τ(Mnc); τ(M∆).

By Lemma 9.1 there exists a constant c ∈
�

such that height(τ(M)(t)) ≤ cheight(t)

for every t ∈ TΣ. Furthermore, height(τ(M)(t)) = height(τ(M∆)(τ(Mnc)(t))) =

size(τ(Mnc)(t)) by the statement in Construction 9.3. This proves the claim.

Thus, we obtain the summary of input-output boundedness for classes of tree trans-

ductions shown in Table 7. The results for TOP and MAC have been proven by

Engelfriet & Vogler (1985). The bound for MAC wsu follows from Theorem 7.1

of (Kühnemann, 1998) and the corresponding boundedness property for attributed

tree transducers (Fülöp, 1981). The result for MAC su is a consequence of Theo-

rem 7.2 of (Kühnemann, 1998) and a boundedness property for single-use attributed

tree transducers (Giegerich, 1988; Kühnemann, 1997).

As pointed out by one referee, these results can be used to prove that MAC nc

and MACwsu are incomparable with respect to inclusion, and that MAC nc is not

included in ATT .

Theorem 9.6

MACnc 6⊆ MACwsu, MAC wsu 6⊆ MACnc and MAC nc 6⊆ ATT

Proof

Consider the mtts Mexp and Mbin from Example 3.8 and the statements in items 3

and 4 of that example.
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• τ(Mexp) ∈ MAC nc \ (MAC wsu ∪ ATT ), because for every t ∈ TNat we have

height(τ(Mexp)(t)) = 2height(t) = 2size(t)−1, which is inconsistent with the

linear height-size bound for weakly single-use mtts and for attributed tree

transducers (Fülöp, 1981).

• τ(Mbin) ∈ MACwsu \MAC nc, because for every fully balanced binary tree

t ∈ T∆bin
we have size(τ(Mbin)(t)) = 2(2height(t)+1) − 1, which is inconsistent

with the exponential size-height bound for non-copying mtts.

10 Conclusion

We have presented a direct construction that composes a non-copying mtt and a

weakly single-use mtt, which are special functional programs. Thus, we have broad-

ened the applicability of a technique—first proposed by Kühnemann (1997; 1998)—

for eliminating intermediate data structures in functional programs, including those

built up in accumulating parameters.

Central to understanding under what conditions mtts can be composed, was the

question Q raised in Subsection 4.5. We think that this question is also the key to re-

lax further the restrictions needed to compose two mtts or to find other restrictions

that enable such a construction. In particular, we believe that a direct composition

construction for the setting of attributed-like mtts (Fülöp & Vogler, 1999) can be

given based on a similar idea as the one exploited in the main construction of the

present paper.

Also, we consider it fruitful to further investigate composition constructions for

macro attributed tree transducers (Kühnemann & Vogler, 1994). These could de-

liver interesting transformation techniques for higher-order functional programs.

The basic idea is that—under appropriate restrictions—functions that use con-

text parameters of higher-order type can be transformed into macro attributed

tree transducers, similarly to direct translations of functions with context param-

eters of first-order type into attributed tree transducers (Courcelle & Franchi-

Zannettacci, 1982; Höff, 1998; Engelfriet & Maneth, 1999). Then, decomposition

results of Kühnemann (1998) can be applied, thus introducing new intermediate

results, but creating new opportunities for compositions, which altogether can still

lead to an optimisation.
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