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Abstract. We present an approach to automatically generating operation invari-
ance tests for use with Haskell’s random testing framework QuickCheck. The
motivation stems from a paper by Holdermans [8] which showed how to address
certain shortcomings of straightforward testing of implementations of an abstract
datatype. While effective, his solution requires extra generation work from the test
engineer. Also, it may not even be doable if the person responsible for testing has
no knowledge about, and program-level access to, the internals of the concrete
datatype implementation under test. We propose and realize a refinement to Hol-
dermans’ solution that improves on both aspects: Required operation invariance
tests can be formulated even in ignorance of implementation internals, and can be
automatically generated using Template Haskell.

1 Introduction

It is good software engineering practice to test one’s, and possibly other’s, code. In
declarative languages, QuickCheck [4] and related tools [1, 3, 10] are an attractive
option, combining convenient ways of generating test input data and a DSL for expressing
properties to be tested.

One recurring situation where property-based testing is desirable is in connection
with implementations of an abstract datatype (ADT) specification. The scenario is that
some interface (API) is given as a collection of type signatures of operations along
with a collection of equational axioms that are expected to hold of those operations.
Then there is an, or possibly several, implementations of that specification. The user of
such an implementation should not need to be concerned with its internals, but would
still like to be convinced of its correctness. It seems very natural to simply turn the
given axioms into QuickCheck-like properties, and to accept an implementation as
correct if it passes all those axioms-become-tests. However, it has been known for a
while that such an approach is not enough to uncover all possible errors [6, 9]. Subtle
bugs can remain hidden, due to an unfortunate interplay of buggy implementation and
programmed equality (while actual semantic equality is impossible to test in general).
Recently, Holdermans [8] presented a solution that works by adding operation invariance
tests, to ensure that the assumed notion of equality is not just an equivalence relation, but
actually a congruence relation. His solution has its own problems though. Specifically, it
requires hand-writing a certain kind of additional test input data generator. But not only
is that something which may depend on implementation internals (so is not necessarily
something that a user having access only to the datatype’s external API could do); it is
also extra work and an additional source of potential errors: get that generator wrong by
not covering enough ground, and even the additional tests will not be enough to really
establish overall correctness. We set out to improve on these aspects.



2 The Need for Operation Invariance Tests

This section is largely a recap of material from Holdermans’ paper. Specifically, we also
use his very compelling example of how the approach of simply (and only) testing the
axioms from the specification of an ADT may lead to a false sense of security.

Assume a set of people is interested in integer FIFO queues, and in particular
in separately specifying, implementing, and using them. The specification is just a
mathematical entity, consisting of a listing of signatures of desirable operations:

empty ::Queue
enqueue :: Int→ Queue→ Queue
isEmpty ::Queue→ Bool
dequeue ::Queue→ Queue
front ::Queue→ Int

and of axioms expected to hold:

Q1: isEmpty empty = True

Q2: isEmpty (enqueue x q) = False

Q3: front (enqueue x empty) = x

Q4: front (enqueue x q) = front q if isEmpty q = False

Q5: dequeue (enqueue x empty) = empty

Q6: dequeue (enqueue x q) = enqueue x (dequeue q) if isEmpty q = False

An implementation in Haskell would be a module

module Queue (Queue,empty,enqueue, isEmpty, front,dequeue) where
. . .

that contains some definition for Queue as well as definitions for the operations adhering
to the type signatures from the specification. Importantly, the type Queue is exported
without any data constructors, so from the outside of the module, Queue values can only
be created, manipulated, and inspected using the provided operations. A prospective
user of the implementation can import the above module and call those operations in
application code. Now, the user would like to have some certainty that the implementa-
tion is correct. The appropriate notion of correctness is adherence to the axioms from
the mathematical specification, on which user and implementer should have agreed
beforehand. One way for the implementer to convince the user of the correctness is to
do extensive property-based testing to establish validity of the specification’s axioms
for the provided implementation. Using QuickCheck, the test suite would consist of the
following properties:

q1 = property (isEmpty empty == True)

q2 = property (λx q→ isEmpty (enqueue x q) == False)

q3 = property (λx→ front (enqueue x empty) == x)



q4 = property (λx q→ isEmpty q == False
=⇒
front (enqueue x q) == front q)

q5 = property (λx→ dequeue (enqueue x empty) == empty)

q6 = property (λx q→ isEmpty q == False
=⇒
dequeue (enqueue x q) == enqueue x (dequeue q))

These could even be written down by the user person in ignorance of any internals of the
implementation. However, the use of == on Queue values requires availability of an
appropriate instance of the Eq type class (which is how Haskell organizes overloading of
==). Let us assume the implementer provides such an instance. Moreover, we have to
assume that the implementer also provides an appropriate random generator for Queue
values (the q values quantified via the lambda-abstractions above – whereas for the Int
values quantified as x we can take for granted that a random generator already exists),
because otherwise the properties cannot be tested. In general, the implementer may even
have to provide several random Queue generators for different purposes, for example
since otherwise certain preconditions in axioms might be too seldom fulfilled, thus
preventing effective testing.1 But in the example here this is not an issue, since both
empty and nonempty queues will appear with reasonable likelihood among the generated
test data.

So if a Queue implementation passes all the above tests, it should be correct, right?
Unfortunately not. As Holdermans [8] demonstrates, it can happen, even under all the
assumptions above, that an implementation passes all the tests but is still harmfully
incorrect. Let us repeat that faulty implementation in full as well (also since we will later
want to refer to it in checking the adequacy of our own testing solution to the overall
problem). Here it is:

data Queue= BQ [Int] [Int]

bq :: [Int]→ [Int]→ Queue
bq [ ] r = BQ (reverse r) [ ]
bq f r = BQ f r

empty ::Queue
empty = bq [ ] [ ]

enqueue :: Int→ Queue→ Queue
enqueue x (BQ f r) = bq f (x : r)

isEmpty ::Queue→ Bool
isEmpty (BQ f ) = null f

1 QuickCheck’s restricting conditional operator =⇒, written as ==>, does not count “A” being
false as evidence for “A implies B” being true. Thus, in order to reach a certain number of
positive test cases for “A implies B”, that many cases with both “A” and “B” being true must
be encountered (and, of course, not a single case with “A” true but “B” false). Consequently,
QuickCheck gives up testing if not enough cases with “A” being true are encountered.



front ::Queue→ Int
front (BQ f ) = last f

dequeue ::Queue→ Queue
dequeue (BQ f r) = bq (tail f ) r

This implementation uses the “smart constructor” bq to preserve the invariant that, for
every BQ f r, it holds that null f implies null r, which makes front simpler to implement.
Ironically, in the implementation above the error nevertheless lies in the definition of
front, which should have been head f rather than last f .

As already mentioned, in order to test properties q1–q6, we need a definition of ==
for Queue and a random generator for Queue values. The implementer is kind enough
to provide both (and both are perfectly sane) within the Queue module:

instance Eq Queue where
q == q′ = toList q == toList q′

toList ::Queue→ [Int]
toList (BQ f r) = f ++ reverse r

instance Arbitrary Queue where
arbitrary = do f ← arbitrary

r← arbitrary
return (bq f r)

Now we can run tests quickCheck q1 through quickCheck q6, and find that all are satisfied.
And this is not just happenstance, by incidentally not hitting a counterexample during the
random generation of test input data. No, it is a mathematical fact that the implementation
above satisfies the ==-equations in properties q1–q6. And yet the implementation is
incorrect. To see this, consider:

> front (dequeue (enqueue 3 (enqueue 2 (enqueue 1 empty))))
3

Clearly, a correct implementation of a FIFO queue should have output 2 here. In fact,
Q2–Q6 can be used to prove, by equational reasoning, that

front (dequeue (enqueue 3 (enqueue 2 (enqueue 1 empty)))) = 2

The key to what went wrong here (the implementation being incorrect and yet passing
all the tests derived from the specification axioms) is that properties q1–q6 do not, and
in fact cannot, test for semantic equivalence. They can only be formulated using the
programmed equivalence ==. That would be fine if == were not just any equivalence
relation that satisfies q1–q6 (which we know it does), but actually a congruence relation
that does so. For otherwise, == cannot correspond to the semantic equivalence =
intuitively used in Q1–Q6. Being a congruence relation means to, in addition to being an
equivalence relation, be compatible with all operations from the ADT specification. And
that is not the case for the implementation given above. For example,

> let q = dequeue (enqueue 3 (enqueue 2 (enqueue 1 empty)))
> let q′ = enqueue 3 (dequeue (enqueue 2 (enqueue 1 empty)))



> q == q′

True

but

> front q == front q′

False

That does not necessarily mean that, morally, the implementation of == given for Queue
(and used in the tests) is wrong. The real bug here resides in the implementation of front,
but it cannot be detected by just checking q1–q6; one additionally needs appropriate
compatibility axioms.2

So Holdermans [8] observes that one should check additional axioms like

q7 = property (λq q′→ q == q′ =⇒ front q == front q′)

Actually, he wisely adds a non-emptiness check to the precondition to prevent both
front q and front q′ from leading to a runtime error. But even then, the new axiom (or
any of the other added compatibility axioms) does not – except in very lucky attempts –
actually uncover the bug in the implementation. The problem is that it is very unlikely
to hit a case with q == q′ for random q and q′. And even if QuickCheck hits one
such case every now and then, it is not very likely that it is also a counterexample to
front q == front q′. So in the vast majority of test runs QuickCheck simply gives up,
and we are none the wiser about whether the compatibility axioms do hold for the given
implementation or do not.

Holdermans’ solution to this problem is to invest manual effort into randomly
generating pairs of q and q′ that ought to be considered equivalent queues. Concretely,

data Equiv a = a :≡: a

instance Arbitrary (Equiv Queue) where
arbitrary = do z← arbitrary

x← from z
y← from z
return (x :≡: y)

where
from xs = do i← choose (0, length xs−1)

let (xs1,xs2) = splitAt i xs
return (bq xs1 (reverse xs2))

Given some Show instances for Queue and Equiv Queue, testing the newly formulated
property

q7 = property (λ (q :≡: q′)→ not (isEmpty q) =⇒ front q == front q′)

would yield, for example:
2 In general, one should also convince oneself in the first place that == is indeed an equivalence

relation as well (reflexive, symmetric, transitive), but often this will be a triviality. For example,
any definition of the form x == x′ = f x == f x′ for some function f , like in the Eq instance for
Queue, is already guaranteed to give an equivalence relation if == on the target type of f is
known to be an equivalence relation.



> quickCheck q7
*** Failed! Falsifiable (after 5 tests):

BQ [2,0] [ ] :≡: BQ [2] [0]

That, finally, is useful information which can be used to figure out the bug in the
implementation of front.

But this success depends on the implementer having provided a good definition
for the Arbitrary (Equiv Queue) instance above, specifically, a good from-function for
“perturbing” a randomly generated queue in different ways. Note, this is not something
the user could do themselves, or exercise any control over, since implementing that
instance crucially depends on having access to the internals of the queue implementation
module. If the implementer makes a mistake in writing that function/instance, then the
bug in the original implementation of front will possibly remain unnoticed. For example,
in an extreme case, the implementer may accidentally write the Arbitrary (Equiv Queue)
instance in such a way that from is semantically equivalent to return, in which case q7
and all other compatibility axioms will be tested positively, despite the implementation of
front still being incorrect. Holdermans notes that one might test the chosen perturbation
functionality itself to ensure not having introduced an error there. But this, which would
correspond to a test quickCheck (λ (q :≡: q′)→ q == q′) does not help with judging
the suitability of the perturbation in terms of having “enough randomness”; clearly
from xs = return xs would make this test succeed as well. And the inverse property, that
any pair of equivalent queues q == q′ has indeed a chance of also being generated as
q :≡: q′, is unfortunately not expressible as a QuickCheck test.

Our purpose now is to avoid the need of defining an Arbitrary (Equiv Queue) in-
stance. Thus, we will empower the user to detect operation invariance violations in an
ADT implementation without having access to internals or relying on the implementer
to generate the required pairs of equivalent values for tests.

3 Thoughts on Random Terms

A simple idea would be to work purely symbolically as long as possible. For example,
the values

q = dequeue (enqueue 3 (enqueue 2 (enqueue 1 empty)))

and

q′ = enqueue 3 (dequeue (enqueue 2 (enqueue 1 empty)))

that we first mentioned as evidence for a case with q == q′ but front q /= front q′3,
are semantically equivalent according to Q1–Q6. Naturally, any pair of conceptually
equivalent queues can be shown (mathematically) to be equivalent by using those original
axioms. After all, that is the whole point of having the ADT specification comprising of
those axioms in the first place.

3 We have /= as the negation of programmed equivalence ==.



So a suitable strategy for generating terms q and q′ that would be eligible as q :≡: q′

pairs might be to start from the given signatures of operations, randomly generate a
well-typed term q from those operations, then randomly apply a random selection of the
axioms Q1–Q6 at random places in the term q to obtain another term q′. Using pairs of
such q and q′ for tests like front q == front q′ (now actually computing the result, no
longer working symbolically) would indeed, in principle, have the power to detect the
bugs that violate operation invariance. In fact, this is exactly the strategy we initially
pursued.

However, it does not work out in practice. Already generating random terms is
known to be non-trivial, though solutions exist [5]. Moreover applying random axioms
at random places is difficult in general to get right in the sense of ending up with a
probability distribution that is effective in terms of hitting cases that uncover bugs. For
example, given an integer queue, only the root node can be of type Bool, which will
lead to a low probability of axiom Q2 to be applicable at a randomly selected node and
an even lower probability of it to be selected for application, especially for large terms.
Conversely first deciding on an axiom to apply and then randomly generating a (sub)term
at which it is indeed applicable leads to similar uncertainties about coverage.

Additionally, there is a problem with “infeasible” terms. For integer queues, that is
every term where dequeue or front is applied to a subterm t with isEmpty t being True.
Assume for now that x in each term enqueue x q might only be an integer (and not a
more complex subterm front q′).4 Then the tree of each term is a path. Its leaf will be
empty, its root node one of enqueue, isEmpty, front, or dequeue. All inner nodes can
only be one of enqueue or dequeue. If at any node in the path more of its descendants
are of type dequeue than enqueue, then the term is not valid. The probability that a term
of length n is feasible is 1

2 for n = 1, 252
1024 for n = 10, and about 0.125 for n = 40. This

might be much worse for ADTs with more complex terms.
Without prior knowledge about which operations are problematic and which axioms

contribute to situations of equivalent values (queues, in the example) whose equivalence
is not preserved by applying an operation, there is not much hope with the naive approach
described above. But of course we precisely want to avoid having to invest any such
knowledge about a specific ADT or implementation, since our goal is a generic solution
to the problem. Also, working purely symbolically would not be practical for another
reason: some axioms, like Q4 and Q6, have preconditions that need to be established
before application. So in the hypothetical rewriting of q into q′ by random applications of
axioms described above, we would either have to symbolically prove such preconditions
along the way (arbitrarily hard in general), or resort to actually computing values of
subterms of q to establish whether some axiom is applicable there or not.

4 Our Solution

So what can we do instead? We want to avoid having to apply arbitrarily many rewrites
at random places deep in some terms. Toward a solution, let us discuss the case of a
binary operation f with two argument positions to be filled by a value of the abstract

4 This could be seen as having an operation enqueuex ::Queue→Queue for every x :: Int.



datatype (unlike in the case of Queue, where no operation takes more than one queue as
input).5 The required operation invariance test would be that t1 :≡: t′1 and t2 :≡: t′2 imply
f t1 t2 == f t′1 t′2, where ti :≡: t′i means that ti and t′i are convertible, i.e., there is a sequence
of axiom applications that leads from term ti to term t′i. We claim that it would be enough
to focus on the two argument positions of f separately, and to consider only single axiom
applications. Indeed, assume the above test leads to a counterexample, i.e., f t1 t2 /= f t′1 t′2.
Then there are already t, t′, and t′′ with f t t′ /= f t t′′ or f t′ t /= f t′′ t and where t′ and t′′

are exactly one axiom application apart. Why? By the given assumptions, we can form a
sequence f t1 t2 = . . .= f t′1 t2 = . . .= f t′1 t′2 of single axiom applications, where in the
first part of that sequence axioms are only applied inside the first argument position of f ,
later only inside the second one. Now if t, t′, and t′′ with the claimed properties would not
exist, then it would have to be the case that f t1 t2 == . . .== f t′1 t2 == . . .== f t′1 t′2 and
thus f t1 t2 == f t′1 t′2 by transitivity of ==6. But this is a contradiction to f t1 t2 /= f t′1 t′2.

So, generalizing from the case of a binary operation, we have that in order to es-
tablish operation invariance overall, it suffices to test that for every operation f it holds
f . . . t′ . . .== f . . . t′′ . . . for every argument position and all pairs t′ and t′′ of terms related
by exactly one axiom application and where the other argument positions are appropri-
ately filled with random input (but with the same on left and right; this is what the “. . .”
indicate in f . . . t′ . . .== f . . . t′′ . . . ). Still, the axiom application relating t′ and t′′ could
be somewhere deeply nested, i.e., t′ could be f1 . . .(f2 . . .(. . .(fn . . . lhs . . .) . . .) . . .) . . .
and t′′ be f1 . . .(f2 . . .(. . .(fn . . . rhs . . .) . . .) . . .) . . . , where lhs and rhs are the two sides
of an instantiated axiom, while all the other parts (“. . .”) in the two nestings agree. We
could generate tests arising from this, an important observation being that for the “. . .”
parts, since they are equal on both sides (not only equivalent), we can simply use random
values – no random symbolic terms are necessary, which is an important gain. Note that,
as Haskell is purely functional, it is not necessary to model dependencies between argu-
ments to obtain completeness. Actually, we restrict to a subset of all tests, namely ones
where the axiom application in fact is at the root of t′ and t′′. That is, we only employ
tests f . . . lhs . . .== f . . . rhs . . . , not e.g. f . . .(f1 . . . lhs . . .) . . .== f . . .(f1 . . . rhs . . .) . . .
– a pragmatic decision, but also one that has turned out well so far. We have not en-
countered a situation where this narrowing of test cases has missed some bug, ex-
cept in very artificial examples manufactured just for that purpose. The intuitive rea-
son seems to be that by doing all tests f . . . lhs . . . == f . . . rhs . . . , which of course
also includes the tests f1 . . . lhs . . . == f1 . . . rhs . . . , for varying lhs/rhs as obtained
from all axioms, one casts a fine enough net – situations where these all go through,
along with all standard instantiations lhs == rhs obtained from the axioms, but where
f . . .(f1 . . . lhs . . .) . . .== f . . .(f1 . . . rhs . . .) . . . would fail, appear to be extremely rare.

To summarize, we propose to test operation invariance via properties of the following
form, for each combination of one operation, one argument position, and one axiom:

f x1 . . .(axiomlhs y1 . . .ym) . . .xn == f x1 . . .(axiomrhs y1 . . .ym) . . .xn

5 The consideration of binary operations here is without loss of generality. Dealing with unary
operations is simpler, and dealing with operations of higher arity than two is analogous to
dealing with binary operations, just requires more index fiddling in the discussion.

6 Note that while the operation invariance property of == is still under test, we were willing to
simply take for granted that == is at least an equivalence relation. See also Footnote 2



where like the xi (alluded to as the “other” values above), the y j – which are meant
to fill any variable positions in a symbolic axiom lhs = rhs – can be simply values.
No need for symbolic terms, since neither in the xi nor in the y j positions we need to
assume any further possible axiom rewrites. Also, no need to generate terms/values in
an implementation-dependent way, since the signature and axiom information from the
ADT specification suffices. The discussion in the paragraphs preceding this one implies
that the proposed approach is sound (if a counterexample is found, then there is a genuine
problem with the ADT implementation under test), but not in general complete (even if
the axioms and our subset of operation invariance properties are tested exhaustively, some
bug in the ADT implementation might be missed – due to our pragmatic decision not to
consider deeper nested rewrites like f x1 . . .(f1 y1 . . .(axiomlhs z1 . . .zl) . . .ym) . . .xn ==
f x1 . . .(f1 y1 . . .(axiomrhs z1 . . .zl) . . .ym) . . .xn).

The full set of tests of the proposed form for integer queues follows. An index
enqueue1 or enqueue2 indicates that the first or second argument position of enqueue is
filled by the particular axiom, respectively. Parameters with a prime (i.e. q′ and x′) fill
the other arguments of the tested operation as opposed to being variables of the relevant
axiom.

enqueue1 q3 = property (λx q′→ let lhs = front (enqueue x empty)
rhs = x

in enqueue lhs q′ == enqueue rhs q′)

enqueue1 q4 = property (λx q q′→ isEmpty q == False
=⇒
let lhs = front (enqueue x q)

rhs = front q
in enqueue lhs q′ == enqueue rhs q′)

enqueue2 q5 = property (λx x′→ let lhs = dequeue (enqueue x empty)
rhs = empty

in enqueue x′ lhs == enqueue x′ rhs)

isEmpty q5 = property (λx→ let lhs = dequeue (enqueue x empty)
rhs = empty

in isEmpty lhs == isEmpty rhs)

enqueue2 q6 = property (λx q x′→ isEmpty q == False
=⇒
let lhs = dequeue (enqueue x q)

rhs = enqueue x (dequeue q)
in enqueue x′ lhs == enqueue x′ rhs)

isEmpty q6 = property (λx q→ isEmpty q == False
=⇒
let lhs = dequeue (enqueue x q)

rhs = enqueue x (dequeue q)
in isEmpty lhs == isEmpty rhs)

dequeue q6 = property (λx q→ isEmpty q == False
=⇒



let lhs = dequeue (enqueue x q)
rhs = enqueue x (dequeue q)

in not (isEmpty lhs) =⇒
dequeue lhs == dequeue rhs)

front q6 = property (λx q→ isEmpty q == False
=⇒
let lhs = dequeue (enqueue x q)

rhs = enqueue x (dequeue q)
in not (isEmpty lhs) =⇒

front lhs == front rhs)

There are two additional tests that syntactically belong to the others, but do not really
add anything:

dequeue q5 = property (λx→ let lhs = dequeue (enqueue x empty)
rhs = empty

in not (isEmpty lhs) =⇒
dequeue lhs == dequeue rhs)

front q5 = property (λx→ let lhs = dequeue (enqueue x empty)
rhs = empty

in not (isEmpty lhs) =⇒
front lhs == front rhs)

This is because both sides of Q5 are empty queues, but neither dequeue nor front work
on those.

5 A Practical Implementation

The tests shown in the previous section can (almost) strictly syntactically be derived from
the specification. For every operation, every argument the operation has, and every axiom,
one test can be obtained – by applying the operation at the selected argument to the
axiom if the types allow it. In addition, constraints may have to be added per operation
to prevent their application to invalid values, like the constraints not (isEmpty lhs) in
dequeue q6 and front q6 (and in dequeue q5 and front q5).

A tool or library that generates these tests automatically needs type information
about both operations and axioms. Details about the implementation of the datatype and
operations, or the specific terms in the axioms, are not necessary. As relatively arbitrarily
typed code must be generated, it seems to be at least very tricky to do this with plain
Haskell and without a lot of manual help. Thus, to automate our solution as much as
possible, we used Template Haskell [11]. As a result, none of the shown tests need to be
hand-written by the user.

As a case study, we demonstrate here different ways how our tool/library (in a
new module Test.OITestGenerator) can be used to generate appropriate QuickCheck
tests. First, the axioms have to be specified. For this, OITestGenerator exports a datatype
AxiomResult a, its constructor =!=, and a restricting conditional operator V7 that works

7 which is written as ===>



akin to =⇒ as known from QuickCheck. Axioms with variables are written as functions
with corresponding arguments, returning an AxiomResult a where a is the codomain of
the axiom’s left- and right-hand side.

q1 ::AxiomResult Bool
q1 = isEmpty empty =!= True

q2 :: Int→ Queue→ AxiomResult Bool
q2 = λx q→ isEmpty (enqueue x q) =!= False

q3 :: Int→ AxiomResult Int
q3 = λx→ front (enqueue x empty) =!= x

q4 :: Int→ Queue→ AxiomResult Int
q4 = λx q→ not (isEmpty q)V front (enqueue x q) =!= front q

q5 :: Int→ AxiomResult Queue
q5 = λx→ dequeue (enqueue x empty) =!= empty

q6 :: Int→ Queue→ AxiomResult Queue
q6 = λx q→ not (isEmpty q)V dequeue (enqueue x q) =!= enqueue x (dequeue q)

This is already enough preparation to generate the basic tests, i.e., direct translations of
the axioms, with the provided function generate basic tests. It gets one argument, a list
of Axioms. Axiom is a container holding a) the name of an axiom, which (the axiom)
must be a function returning an AxiomResult a, and b) possibly custom generators for
the function’s arguments. It has one constructor function axiom, which takes a Name –
custom generators can be assigned to an Axiom via withGens, which is explained later.
Then generate basic tests returns an expression of type [Property ]. Property is the type
of QuickCheck tests, as returned by the function property in the earlier given versions of
q1–q6.

In using generate basic tests to generate the basic tests from the above functions
returning AxiomResults, two of Template Haskell’s syntactic constructs will be needed:
The first are splices. A splice is written $(. . .), where . . . is an expression. A splice may
occur instead of an expression. The splice will be evaluated at compile time and the
syntax tree returned by it will be inserted in its place. The second construct used is ’ . . . ,
where . . . is a name of a function variable or data constructor. Then ’ . . . is of type Name
and its value represents the name of the . . . that was quoted. Using these constructs, we
can write:

adt basic tests :: [Property ]
adt basic tests = $(let axs = map axiom [’q1, ’q2, ’q3, ’q4, ’q5, ’q6 ]

in generate basic tests axs)

Now, adt basic tests can be executed via mapM quickCheck adt basic tests.
Before the, for our purposes more interesting, operation invariance tests can be

generated, constraints for dequeue and front must be specified. Such a constraint function
has the purpose of deciding whether a set of arguments is valid for the respective
operation. Thus it takes the same arguments, but returns a Bool independently of the
operation’s return type.



may dequeue ::Queue→ Bool
may dequeue = not ◦ isEmpty

may front ::Queue→ Bool
may front = not ◦ isEmpty

Given these, the operation invariance tests can be generated by the provided function
generate oi tests. For operations there exists a datatype Op similar to Axiom, with one
constructor function op. The function withConstraint may be used to add a constraint to
an operation.8 It may also be used multiple times on the same operation, in which case
the constraints are connected with a logical “and”.

adt oi tests :: [Property ]
adt oi tests = $(let ops = [op ’empty

,op ’enqueue
,op ’isEmpty
,withConstraint (op ’dequeue) ’may dequeue
,withConstraint (op ’front) ’may front ]

axs = map axiom [’q1, ’q2, ’q3, ’q4, ’q5, ’q6 ]
in generate oi tests axs ops)

Note that the repeated local definition of axs (in both adt basic tests and adt oi tests)
is necessary due to Template Haskell’s stage restrictions. It is not possible to refer to a
top-level declaration in the same file, because it is still being compiled when the splices
are executed. Note also that empty could be omitted here from the list of operations as it
takes no arguments.

Running the tests automatically generated above is enough to detect the buggy
implementation of front!

+++ OK, passed 100 tests (100% Queue.enqueue@1/Main.q3).

+++ OK, passed 100 tests (100% Queue.enqueue@1/Main.q4).

+++ OK, passed 100 tests (100% Queue.enqueue@2/Main.q5).

+++ OK, passed 100 tests (100% Queue.isEmpty@1/Main.q5).

*** Gave up! Passed only 0 tests.

*** Gave up! Passed only 0 tests.

+++ OK, passed 100 tests (100% Queue.enqueue@2/Main.q6).

+++ OK, passed 100 tests (100% Queue.isEmpty@1/Main.q6).

+++ OK, passed 100 tests (100% Queue.dequeue@1/Main.q6).

*** Failed! Falsifiable (after 5 tests):

3

BQ [4 ] [4,−3 ]

The test that fails here is front q6 (which would have appeared in the output as
Queue.front@1/Main.q6). Note that two tests were generated that are correctly typed
but have no valid input (as already observed further above when writing down proper-
ties by hand); namely dequeue q5 and front q5 alias Queue.dequeue@1/Main.q5 and

8 As opposed to constraints for axioms, which are specified using V in the function whose name
is passed to axiom.



Queue.front@1/Main.q5. They could be avoided by using other functions exported
by OITestGenerator and explained below.

Generators can be passed to an operation via withGens in a list, with one generator
name for each argument, as in withGens (op ’enqueue) [’arbitrary, ’arbitrary]. It is not
allowed to omit generators when using withGens; instead arbitrary must be passed if
no special generator should be used for some position. The function withGens can be
intermingled with withConstraint and may also be used on Axioms.

Also, there is a convenience function generate axiom’s tests which takes only one
Axiom and a list of Ops. It is useful when certain combinations of axioms and operations
should be excluded. It can also be used when only specific argument positions of an
operation should be excluded for an axiom. The function but ::Op→ Arg→ Op, when
called as o ‘but‘ i, excludes the ith argument from o when generating tests. Arg has a
single constructor function arg :: Int→ Arg. The function but may be called multiple
times on the same operation to exclude multiple arguments. To supplement it, there also
is only ::Op→ Arg→ Op to include only one argument. For illustration:

all q5 :: [Property ]
all q5 = $(let ops = [op ’empty

,op ’enqueue
,op ’isEmpty
,op ’dequeue ‘but‘ arg 1
,op ’front ‘but‘ arg 1 ]

in generate axiom’s tests (axiom ’q5) ops)

Of course, in this case, dequeue and front could simply be omitted completely as they
do only have one argument.

Another convenience function is generate single test, which again works similarly
to generate oi tests, but takes only one Axiom and one Op instead of lists, and generates
only a single test. It may be used when more control is needed.

enqueue1 q3 = $(generate single test (axiom ’q3) (op ’enqueue ‘only‘ 1))
enqueue1 q4 = $(generate single test (axiom ’q4) (op ’enqueue ‘only‘ 1))
enqueue2 q5 = $(generate single test (axiom ’q5) (op ’enqueue ‘only‘ 2))
isEmpty1 q5 = $(generate single test (axiom ’q5) (op ’isEmpty ‘only‘ 1))
enqueue2 q6 = $(generate single test (axiom ’q6) (op ’enqueue ‘only‘ 2))
isEmpty1 q6 = $(generate single test (axiom ’q6) (op ’isEmpty ‘only‘ 1))
dequeue1 q6 = $(generate single test (axiom ’q6) (op ’dequeue ‘only‘ 1))
front1 q6 = $(generate single test (axiom ’q6) (op ’front ‘only‘ 1))

No constraints are passed here because the superfluous tests dequeue1 q5 and front1 q5
were purposefully omitted, and because no axiom but Q5 can result in an empty queue.

As writing such a list of tests is cumbersome, there is a function show all tests ::
Maybe (String→ Int→ String→ String)→ [Name ]→ [Name ]→ ExpQ which takes
an optional formatting function, a list of axiom names, and a list of operation names,
and produces a String-typed expression whose content is exactly the code above (plus
dequeue1 q5 and front1 q5, which were removed manually from the output).



single test str = $(let ops = [’empty, ’enqueue, ’isEmpty, ’dequeue, ’front ]
axs = [’q1, ’q2, ’q3, ’q4, ’q5, ’q6 ]

in show all tests Nothing axs ops)

If constraints have to be added to the generated code, they must be added manually. On
the other hand, all ‘only‘n could be omitted in the case above, since there is no operation
with two arguments of the same type.9 Instead of Nothing above, a custom formatting
function can be passed that generates the names of the properties.

The implementation is available as a Cabal package at http://hackage.haskell.
org/package/qc-oi-testgenerator. Insights into the implementation, as well as
more discussion of formal aspects of the overall approach, can be found in the first
author’s diploma thesis [7].

6 Conclusion and Discussion

We have presented and implemented an approach for automatically checking operation in-
variance for Haskell implementations of abstract datatypes. The user writes down axioms
by closely following standard QuickCheck syntax, and both the ordinary QuickCheck
tests as well as additional operation invariance tests are derived from that.

It might have been more desirable to obtain the necessary information about axioms
directly from existing QuickCheck tests, freeing the user from possibly having to rewrite
them. For this it would be necessary, in the implementation, to obtain the syntax tree of
a given Haskell declaration and find the axiom by looking for a call to ==. Then, type
information for the left- and right-hand side would be needed. As of today, neither is
possible with Template Haskell: The Info data structure returned by reify has a field of
type Maybe Dec to hold the syntax tree of the right-hand side of a declaration. However,
according to the documentation of Template Haskell’s most current version 2.9.0.0,
there is no implementation for this and the field always contains Nothing. Another way
to obtain the syntax tree would be to write the axioms in expression quotations. In
both cases, though, Template Haskell offers no way of obtaining the necessary type
information, as those can only be retrieved for Names using reify, but not for arbitrary
syntax trees. Also due to Template Haskell not offering a way of calling the type checker
or other convenient ways to help generate correctly typed code yet, the implementation
does not currently support polymorphic types. A workaround making it possible to test
polymorphic abstract datatypes is to construct a (suitably chosen, cf. [2]) monomorphic
instance and rename all participating functions. That way, reify returns the monomorphic
types.

On the conceptual side, it would be attractive to gain more insight into how effective
the kind of tests we generate are in finding bugs in general. This might be achieved by a
formalization of our approach and/or collecting experimental evidence from more case
studies. Here we discuss only a small variation on the running example, which illustrates
an interesting aspect concerning the implementation of equality:

9 The function generate single test throws a compile time error unless there is exactly one way
to combine the given Axiom and Op.

http://hackage.haskell.org/package/qc-oi-testgenerator
http://hackage.haskell.org/package/qc-oi-testgenerator


The error in the shown version of front is hidden from the basic tests only because
the implemented equality compares two values by how the implementer thinks they
should behave. An observational equality like the following one, which even does not
touch the internals, would not so be fooled.

q == q′ | isEmpty q /= isEmpty q′ = False
| isEmpty q = True
| otherwise = front q == front q′ ∧ dequeue q == dequeue q′

Still, the basic tests will not suffice in general. As a very artificial example, consider the
queue implementation used so far, but now without the error in front, and replace the
following two functions:

bq f r = BQ (f ++ reverse r) [ ]

enqueue x q@(BQ f r) | isEmpty q = bq f (r ++ [x ])
| otherwise = BQ f (r ++ [x ])

This error will never be found with the basic tests and using the above observational
equality. So using operation invariance tests is still a good idea.
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