
Type-Based Reasoning

and
Bidirectional Transformation

Janis Voigtländer

Technische Universität Dresden

February 20th, 2009

Polymorphic Types: An Example in Haskell

A standard function:

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

1

Polymorphic Types: An Example in Haskell

A standard function:

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4] — α, β 7→ Int, Int

1

Polymorphic Types: An Example in Haskell

A standard function:

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4] — α, β 7→ Int, Int

map not [True,False] = [False,True] — α, β 7→ Bool,Bool

1

Polymorphic Types: An Example in Haskell

A standard function:

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4] — α, β 7→ Int, Int

map not [True,False] = [False,True] — α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False] — α, β 7→ Int,Bool

1

Polymorphic Types: An Example in Haskell

A standard function:

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4] — α, β 7→ Int, Int

map not [True,False] = [False,True] — α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False] — α, β 7→ Int,Bool

map not [1, 2, 3]

1

Polymorphic Types: An Example in Haskell

A standard function:

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4] — α, β 7→ Int, Int

map not [True,False] = [False,True] — α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False] — α, β 7→ Int,Bool

map not [1, 2, 3] rejected at compile-time

1

Another Example

takeWhile :: (α → Bool) → [α] → [α]
takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

2

Another Example

takeWhile :: (α → Bool) → [α] → [α]
takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

Provable by induction.

2

Another Example

takeWhile :: (α → Bool) → [α] → [α]
takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

Provable by induction.

Or as a “free theorem” [Wadler, FPCA’89].

2

Another Example

takeWhile :: (α → Bool) → [α] → [α]

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

Provable by induction.

Or as a “free theorem” [Wadler, FPCA’89].

2

Another Example

takeWhile :: (α → Bool) → [α] → [α]

filter :: (α → Bool) → [α] → [α]

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

filter p (map f l) = map f (filter (p ◦ f) l)

2

Another Example

takeWhile :: (α → Bool) → [α] → [α]

filter :: (α → Bool) → [α] → [α]

g :: (α → Bool) → [α] → [α]

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

filter p (map f l) = map f (filter (p ◦ f) l)

g p (map f l) = map f (g (p ◦ f) l)

2

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

3

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

3

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

3

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

3

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

3

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

◮ Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

3

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

◮ Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l ,

3

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

◮ Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that it
outputs their images under f .

3

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

◮ Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that it
outputs their images under f .

◮ (g p (map f l)) is equivalent to (map f (g (p ◦ f) l)).

3

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

◮ Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that it
outputs their images under f .

◮ (g p (map f l)) is equivalent to (map f (g (p ◦ f) l)).

◮ That is what was claimed!

3

Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/~voigt/ft:

4

http://linux.tcs.inf.tu-dresden.de/~voigt/ft

Automatic Generation of Free Theorems

4

DFG-Project VO 1512/1-1

Free theorems
• POPL’04
• TCS’07
• I&C’09

Program trans-
formations

• ICFP’02
• FLOPS’08
• MPC’08

Applications
• POPL’08
• POPL’09

Automatentheorie
3. TOCS’07,
7. JFP’04

16. RTA’02

ICFP’07,
PEPM’09,
HCAR

5

DFG-Project VO 1512/1-1

Free theorems
• POPL’04
• TCS’07
• I&C’09

Program trans-
formations

• ICFP’02
• FLOPS’08
• MPC’08

Applications
• POPL’08
• POPL’09

Automatentheorie
3. TOCS’07,
7. JFP’04

16. RTA’02

ICFP’07,
PEPM’09,
HCAR

5

DFG-Project VO 1512/1-1

Free theorems
• POPL’04
• TCS’07
• I&C’09

Program trans-
formations

• ICFP’02
• FLOPS’08
• MPC’08

Applications
• POPL’08
• POPL’09

Automatentheorie
3. TOCS’07,
7. JFP’04

16. RTA’02

ICFP’07,
PEPM’09,
HCAR

•
P
EP

M
’0
8

•
FI

’0
6

5

DFG-Project VO 1512/1-1

Free theorems
• POPL’04
• TCS’07
• I&C’09

Program trans-
formations

• ICFP’02
• FLOPS’08
• MPC’08

Applications
• POPL’08
• POPL’09

Automatentheorie
3. TOCS’07,
7. JFP’04

16. RTA’02

ICFP’07,
PEPM’09,
HCAR

•
P
EP

M
’0
8

•
FI

’0
6

5

DFG-Project VO 1512/1-1

Free theorems
• POPL’04
• TCS’07
• I&C’09

Program trans-
formations

• ICFP’02
• FLOPS’08
• MPC’08

Applications
• POPL’08
• POPL’09

Automatentheorie
3. TOCS’07,
7. JFP’04

16. RTA’02

ICFP’07,
PEPM’09,
HCAR

•
P
EP

M
’0
8

•
FI

’0
6

Project

5

DFG-Project VO 1512/1-1

Free theorems
• POPL’04
• TCS’07
• I&C’09

Program trans-
formations

• ICFP’02
• FLOPS’08
• MPC’08

Applications
• POPL’08
• POPL’09

Automatentheorie
3. TOCS’07,
7. JFP’04

16. RTA’02

ICFP’07,
PEPM’09,
HCAR

•
P
EP

M
’0
8

•
FI

’0
6

Project

5

Bidirectional Transformation

source view

s v

s ′ v ′

get

6

Bidirectional Transformation

source view

s v

s ′ v ′

get

update

6

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

6

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

6

Bidirectional Transformation

source view

s v

s v

get

=

Acceptability / GetPut

6

Bidirectional Transformation

source view

s v

s v

get

put

=

Acceptability / GetPut

6

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Consistency / PutGet

6

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

get

Consistency / PutGet

6

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

6

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Lenses, DSLs

[Foster et al., ACM TOPLAS’07, . . .]

6

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Bidirectionalization

[Matsuda et al., ICFP’07]

6

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Syntactic Bidirectionalization

[Matsuda et al., ICFP’07]

6

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

?

Semantic Bidirectionalization

6

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

X

Semantic Bidirectionalization

[V., POPL’09]

6

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

7

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:

“abc” “bc”

“ade” “de”

tail

7

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:

“abc” “bc”

“ade” “de”

tail

update

7

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:

“abc” “bc”

“ade” “de”

tail

bff tail

update

7

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

7

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

update

7

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abac”

‘a’ ‘b’ ‘x’ ‘c’
“abxc”

flatten

bff flatten

update

7

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abc”

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

7

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abc”

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

update

7

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:

‘a’ ‘b’ ‘a’ ‘c’
“abc”

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

bff (nub ◦ flatten)

update

7

Analyzing Specific Instances

Assume we are given some

get :: [α] → [α]

How can we, or bff, analyze it without access to its source code?

8

Analyzing Specific Instances

Assume we are given some

get :: [α] → [α]

How can we, or bff, analyze it without access to its source code?

Idea: How about applying get to some input?

8

Analyzing Specific Instances

Assume we are given some

get :: [α] → [α]

How can we, or bff, analyze it without access to its source code?

Idea: How about applying get to some input?

Like:

get [0..n] =







[1..n] if get = tail

[n..0] if get = reverse

[0..(min 4 n)] if get = take 5
...

8

Analyzing Specific Instances

Assume we are given some

get :: [α] → [α]

How can we, or bff, analyze it without access to its source code?

Idea: How about applying get to some input?

Like:

get [0..n] =







[1..n] if get = tail

[n..0] if get = reverse

[0..(min 4 n)] if get = take 5
...

Then transfer the gained insights to source lists other than [0..n] !

8

Using a Free Theorem

For every
get :: [α] → [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

9

Using a Free Theorem

For every
get :: [α] → [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Given an arbitrary list s of length n + 1, set f = (s !!), l = [0..n],
leading to:

map (s !!) (get [0..n]) = get (map (s !!) [0..n])

9

Using a Free Theorem

For every
get :: [α] → [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Given an arbitrary list s of length n + 1, set f = (s !!), l = [0..n],
leading to:

map (s !!) (get [0..n]) = get (map (s !!) [0..n])
︸ ︷︷ ︸

= get s

9

Using a Free Theorem

For every
get :: [α] → [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Given an arbitrary list s of length n + 1,

map (s !!) (get [0..n])

= get s

9

Using a Free Theorem

For every
get :: [α] → [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Given an arbitrary list s of length n + 1,

get s = map (s !!) (get [0..n])

9

The Resulting Bidirectionalization Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”
bff (tail ◦ flatten)

tail ◦ flatten

update

10

The Resulting Bidirectionalization Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”
bff (tail ◦ flatten)

10

The Resulting Bidirectionalization Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”

10

The Resulting Bidirectionalization Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”

10

The Resulting Bidirectionalization Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”

tail ◦ flatten

10

The Resulting Bidirectionalization Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”

tail ◦ flatten

10

The Resulting Bidirectionalization Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”

tail ◦ flatten

10

The Resulting Bidirectionalization Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

‘b’ ‘x’ ‘c’ ‘a’
“xca”

tail ◦ flatten

10

The Resulting Bidirectionalization Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

‘b’ ‘x’ ‘c’ ‘a’
“xca”

bff (tail ◦ flatten)

10

The Resulting Bidirectionalization Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

‘b’ ‘x’ ‘c’ ‘a’
“xca”

tail ◦ flatten

10

The Implementation (here: lists only, inefficient version)

bff get s v ′ = let n = (length s) − 1
t = [0..n]
g = zip t s

h = assoc (get t) v ′

h′ = h ++ g

in seq h (map (λi → fromJust (lookup i h′)) t)

assoc [] [] = []
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of

Nothing → (i , b) : m

Just c | b == c → m

11

The Implementation (here: lists only, inefficient version)

bff get s v ′ = let n = (length s) − 1
t = [0..n]
g = zip t s

h = assoc (get t) v ′

h′ = h ++ g

in seq h (map (λi → fromJust (lookup i h′)) t)

assoc [] [] = []
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of

Nothing → (i , b) : m

Just c | b == c → m

◮ actual code only slightly more elaborate

◮ online: http://linux.tcs.inf.tu-dresden.de/~bff

11

http://linux.tcs.inf.tu-dresden.de/~bff

Another Interesting Example

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

? “xbc”
bff (nub ◦ flatten)

nub ◦ flatten

update

12

Another Interesting Example

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

? “xbc”

12

Another Interesting Example

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

? “xbc”

nub ◦ flatten

12

Another Interesting Example

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

? “xbc”

nub ◦ flatten

12

Another Interesting Example

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

? “xbc”

nub ◦ flatten

12

Another Interesting Example

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

12

Summary and Outlook

Types:

◮ constrain the behavior of programs

13

Summary and Outlook

Types:

◮ constrain the behavior of programs

◮ thus lead to interesting theorems about programs

13

Summary and Outlook

Types:

◮ constrain the behavior of programs

◮ thus lead to interesting theorems about programs

◮ combine well with algebraic techniques, equational reasoning

13

Summary and Outlook

Types:

◮ constrain the behavior of programs

◮ thus lead to interesting theorems about programs

◮ combine well with algebraic techniques, equational reasoning

On the programming language side:

◮ push towards full programming languages

13

Summary and Outlook

Types:

◮ constrain the behavior of programs

◮ thus lead to interesting theorems about programs

◮ combine well with algebraic techniques, equational reasoning

On the programming language side:

◮ push towards full programming languages

◮ strife for more expressive type systems

13

Summary and Outlook

Types:

◮ constrain the behavior of programs

◮ thus lead to interesting theorems about programs

◮ combine well with algebraic techniques, equational reasoning

On the programming language side:

◮ push towards full programming languages

◮ strife for more expressive type systems

On the practical side:

◮ efficiency-improving program transformations

13

Summary and Outlook

Types:

◮ constrain the behavior of programs

◮ thus lead to interesting theorems about programs

◮ combine well with algebraic techniques, equational reasoning

On the programming language side:

◮ push towards full programming languages

◮ strife for more expressive type systems

On the practical side:

◮ efficiency-improving program transformations

◮ applications in specific domains

13

References I

F. Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557–575, 1981.

J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and
A. Schmitt.
Combinators for bidirectional tree transformations: A linguistic
approach to the view-update problem.
ACM Transactions on Programming Languages and Systems,
29(3):17, 2007.

P. Hudak, R.J.M. Hughes, S.L. Peyton Jones, and P. Wadler.
A history of Haskell: Being lazy with class.
In History of Programming Languages, Proceedings, pages
12-1–12-55. ACM Press, 2007.

14

References II

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic
derivation of view complement functions.
In International Conference on Functional Programming,

Proceedings, pages 47–58. ACM Press, 2007.

J. Voigtländer.
Bidirectionalization for free!
In Principles of Programming Languages, Proceedings, pages
165–176. ACM Press, 2009.

P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer

Architecture, Proceedings, pages 347–359. ACM Press, 1989.

15

	Free Theorems
	Bidirectional Transformation
	Semantic Bidirectionalization

