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A standard function:
map = (o — B) — [a] — [5]

map f [] =[]
map f (a:as) = (f a): (map f as)

Some invocations:

map succ [1,2,3] =[2,3,4] — a, f — Int, Int
map not [True, False] = [False, True] — a, 3 — Bool, Bool
map even [1,2,3] = [False, True, False] — «, 8+ Int, Bool

map not [1,2,3] 4 rejected at compile-time



Another Example

takeWhile :: (& — Bool) — [a] — [a]

takeWhile p [] =]

takeWhile p (a:as) | pa = a: (takeWhile p as)
| otherwise = ]



Another Example

takeWhile :: (& — Bool) — [a] — [a]

takeWhile p [] =]

takeWhile p (a:as) | pa = a: (takeWhile p as)
| otherwise = ]

For every choice of p, f, and /:
takeWhile p (map f /) = map f (takeWhile (pof) /)

Provable by induction.



Another Example

takeWhile :: (& — Bool) — [a] — [a]

takeWhile p [] =]

takeWhile p (a:as) | pa = a: (takeWhile p as)
| otherwise = ]

For every choice of p, f, and I:
takeWhile p (map f /) = map f (takeWhile (pof) /)
Provable by induction.

Or as a “free theorem” [Wadler, FPCA'89].



Another Example

takeWhile :: (& — Bool) — [a] — [a]

For every choice of p, f, and I:
takeWhile p (map f /) = map f (takeWhile (pof) /)
Provable by induction.

Or as a “free theorem” [Wadler, FPCA'89].



Another Example

takeWhile :: (& — Bool) — [a] — [a]

filter:: (a — Bool) — [a] — [q]

For every choice of p, f, and /:
takeWhile p (map f /) = map f (takeWhile (pof) /)

filter p (map f /) = map f (filter (pof) /)



Another Example

takeWhile :: (& — Bool) — [a] — [a]
filter:: (a — Bool) — [a] — [q]

g (a0 — Bool) = [a] — [q]

For every choice of p, f, and /:
takeWhile p (map f /) = map f (takeWhile (pof) /)
filter p (map f /) = map f (filter (pof) /)

gp(map f 1) = mapf (g(pof)l)
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Why, Intuitively

> g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map f /) and / always have equal length.

» Applying p to an element of (map f /) always has the same
outcome as applying (po f) to the corresponding element of /.

» g with p always chooses “the same” elements from (map f /)
for output as does g with (p o f) from /, except that it
outputs their images under f.

» (g p (map f 1)) is equivalent to (map f (g (po f) /)).

» That is what was claimed!



Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/~voigt/ft:

This tool allows to generate free theorems for sublanguages of Haskell as described here.

The source code of the underlying library and a shell-based application using it is available
here and here.

Please enter a (polymorphic) type, e.g. "(a -> Bool) -> [a] -> [a]" or simply "filter":

[ (a -> Bool) -> [a] -> [a]|

Please choose a sublanguage of Haskell:

® no bottoms (hence no general recursion and no selective strictness)

® general recursion but no selective strictness

® general recursion and selective strictness

Please choose a theorem style (without effect in the sublanguage with no bottoms):
® equational

®inequational

Generate



http://linux.tcs.inf.tu-dresden.de/~voigt/ft

Automatic Generation of Free Theorems

The theorem generated for functions of the type

‘g :: forall a . (a -> Bool) -> [a] -> [a]

in the sublanguage of Haskell with no bottoms is:

forall t1,t2 in TYPES, R in REL(tl,t2).
forall p :: tl -> Bool.
forall q :: t2 -> Bool.
(forall (x, y) in R. p x = q vy)
==> (forall (z, v) in Wift{[]}(R).
(g pz, gaqv)in LEFL{[]}(R))

The structural lifting occurring therein is defined as follows:

llft{[]} R)
{1, [}
u {(x : xs, y

Lys) |
((x, y) in R) && ((xs, ys) in Wft{[1}(R))}

Reducing all permissible relation variables to functions yields:

forall t1,t2 in TYPES, f :: tl -> t2.
forall p :: tl -> Bool.
forall q :: t2 -> Bool.
(forall x :: tl. p x = q (f x))
==> (forall y :: [tl]. map f (g p y) =g q (map f y))

Export as PDF Show type instantiations | Enter a new type Help page
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[Foster et al., ACM TOPLAS'07, ...]
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Semantic Bidirectionalization
[V., POPL'09]
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Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet, .. ..

Examples:
nuboflatten o "
*> “abc
lal lb! laY ICY
update
v
< “Xbc”

AR bff (nuboflatten)
x" ‘b’ 'x" ‘c
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Analyzing Specific Instances

Assume we are given some
get = [a] — [q]
How can we, or bff, analyze it without access to its source code?

Idea: How about applying get to some input?
Like:

[1..n] if get = tail
[n..0] if get = reverse
get [0..n] = [0..(min 4 n)] if get = take 5

Then transfer the gained insights to source lists other than [0..n] !



Using a Free Theorem

For every
get 2 [a] — [a]
we have
map f (get /) = get (map f /)
for arbitrary f and /, where
map :: (o — B) — [o] — [0]

map f [] =[]
map f (a:as) = (f a): (map f as)



Using a Free Theorem

For every
get 2 [a] — [a]

we have
map f (get /) = get (map f /)

for arbitrary f and /, where

map :: (@ — B) — [a] — [I]
map f (] =[]
map f (a:as) = (f a): (map f as)

Given an arbitrary list s of length n+ 1, set f = (s!!), / = [0..n],
leading to:

map (s!!) (get [0..n]) = get (map (s!!) [0..n])



Using a Free Theorem

For every
get 2 [a] — [a]

we have
map f (get /) = get (map f /)

for arbitrary f and /, where
map :: (o — B) — [o] — [0]

map f [] =[]
map f (a:as) = (f a): (map f as)

Given an arbitrary list s of length n+ 1, set f = (s!!), / = [0..n],
leading to:

map (s!!) (get [0..n]) = get (map (s!!) [0..n])
= get s



Using a Free Theorem

For every
get 2 [a] — [a]

we have
map f (get /) = get (map f /)

for arbitrary f and /, where
map :: (o — B) — [o] — [0]

map f [] =[]
map f (a:as) = (f a): (map f as)

Given an arbitrary list s of length n+ 1,

map (s!!) (get [0..n])
= gets



Using a Free Theorem

For every
get 2 [a] — [a]

we have
map f (get /) = get (map f /)

for arbitrary f and /, where

map :: (@ — B) — [a] — [I]
map f (] =[]
map f (a:as) = (f a): (map f as)

Given an arbitrary list s of length n+ 1,

get s = map (s!!) (get [0..n])
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The Implementation (here: lists only, inefficient version)

bff get s v/ =let n = (lengths)—1

t =[0..n]

g =zipts

h = assoc (get t) v/
W=h+g

in seq h (map (Ai — fromJust (lookup i h')) t)

assoc[] ] =1
assoc (i : is) (b: bs) = let m = assoc is bs
in case lookup /i m of
Nothing — (i,b) :m
Justc|b==c—m
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The Implementation (here: lists only, inefficient version)

bff get s v/ =let n = (lengths)—1

t =[0..n]

g =zipts

h = assoc (get t) v/
W=h+g

in seq h (map (Ai — fromJust (lookup i h')) t)

assoc[] ] =1
assoc (i : is) (b: bs) = let m = assoc is bs
in case lookup /i m of
Nothing — (i,b) :m
Justc|b==c—m

» actual code only slightly more elaborate

» online: http://linux.tcs.inf.tu-dresden.de/~bff

11
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Summary and Outlook

Types:
» constrain the behavior of programs
» thus lead to interesting theorems about programs

» combine well with algebraic techniques, equational reasoning

On the programming language side:
» push towards full programming languages

» strife for more expressive type systems

On the practical side:
» efficiency-improving program transformations

» applications in specific domains

13
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