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Polymorphic Types: An Example in Haskell

A standard function:

map :: (α → β) → [α] → [β]
map f [ ] = [ ]
map f (a : as) = (f a) : (map f as)
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map :: (α → β) → [α] → [β]
map f [ ] = [ ]
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4] — α, β 7→ Int, Int

map not [True,False] = [False,True] — α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False] — α, β 7→ Int,Bool

map not [1, 2, 3]  rejected at compile-time
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Another Example

takeWhile :: (α → Bool) → [α] → [α]
takeWhile p [ ] = [ ]
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = [ ]
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Another Example

takeWhile :: (α → Bool) → [α] → [α]

filter :: (α → Bool) → [α] → [α]

g :: (α → Bool) → [α] → [α]

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f ) l)

filter p (map f l) = map f (filter (p ◦ f ) l)

g p (map f l) = map f (g (p ◦ f ) l)
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Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.
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◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

◮ Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f ) to the corresponding element of l .

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f ) from l , except that it
outputs their images under f .

◮ (g p (map f l)) is equivalent to (map f (g (p ◦ f ) l)).

◮ That is what was claimed!
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Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/~voigt/ft:
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DFG-Project VO 1512/1-1

Free theorems
• POPL’04
• TCS’07
• I&C’09

Program trans-
formations

• ICFP’02
• FLOPS’08
• MPC’08

Applications
• POPL’08
• POPL’09

Automatentheorie
3. TOCS’07,
7. JFP’04

16. RTA’02

ICFP’07,
PEPM’09,
HCAR
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Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Lenses, DSLs

[Foster et al., ACM TOPLAS’07, . . . ]
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Bidirectional Transformation

source view

s v

s ′ v ′

get

put
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Bidirectionalization

[Matsuda et al., ICFP’07]
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Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Syntactic Bidirectionalization

[Matsuda et al., ICFP’07]
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Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

?

Semantic Bidirectionalization
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Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

X

Semantic Bidirectionalization

[V., POPL’09]
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Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet, . . . .
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Examples:

‘a’ ‘b’ ‘a’ ‘c’
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‘x’ ‘b’ ‘x’ ‘c’
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Analyzing Specific Instances

Assume we are given some

get :: [α] → [α]

How can we, or bff, analyze it without access to its source code?
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Like:
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Analyzing Specific Instances

Assume we are given some

get :: [α] → [α]

How can we, or bff, analyze it without access to its source code?

Idea: How about applying get to some input?

Like:

get [0..n] =







[1..n] if get = tail

[n..0] if get = reverse

[0..(min 4 n)] if get = take 5
...

Then transfer the gained insights to source lists other than [0..n] !

8



Using a Free Theorem

For every
get :: [α] → [α]

we have
map f (get l) = get (map f l)

for arbitrary f and l , where

map :: (α → β) → [α] → [β]
map f [ ] = [ ]
map f (a : as) = (f a) : (map f as)
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The Resulting Bidirectionalization Scheme by Example

0 1 2 3

[1,2,3]

‘b’ ‘a’ ‘c’ ‘a’

0 → ‘b’

1 → ‘a’

2 → ‘c’

3 → ‘a’

“aca”

0 → ‘b’

1 → ‘x’

2 → ‘c’

3 → ‘a’

1 → ‘x’

2 → ‘c’

3 → ‘a’

? “xca”
bff (tail ◦ flatten)

tail ◦ flatten

update
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The Implementation (here: lists only, inefficient version)

bff get s v ′ = let n = (length s) − 1
t = [0..n]
g = zip t s

h = assoc (get t) v ′

h′ = h ++ g

in seq h (map (λi → fromJust (lookup i h′)) t)

assoc [ ] [ ] = [ ]
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of

Nothing → (i , b) : m

Just c | b == c → m
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The Implementation (here: lists only, inefficient version)

bff get s v ′ = let n = (length s) − 1
t = [0..n]
g = zip t s

h = assoc (get t) v ′

h′ = h ++ g

in seq h (map (λi → fromJust (lookup i h′)) t)

assoc [ ] [ ] = [ ]
assoc (i : is) (b : bs) = let m = assoc is bs

in case lookup i m of

Nothing → (i , b) : m

Just c | b == c → m

◮ actual code only slightly more elaborate

◮ online: http://linux.tcs.inf.tu-dresden.de/~bff
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Another Interesting Example

0 1 0 2

[0,1,2]

‘a’ ‘b’ ‘a’ ‘c’

0 → ‘a’

1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

? “xbc”
bff (nub ◦ flatten)

nub ◦ flatten

update
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1 → ‘b’

2 → ‘c’

“abc”

0 → ‘x’

1 → ‘b’

2 → ‘c’

0 → ‘x’

1 → ‘b’

2 → ‘c’

‘x’ ‘b’ ‘x’ ‘c’
“xbc”

nub ◦ flatten

12



Summary and Outlook

Types:

◮ constrain the behavior of programs
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Summary and Outlook

Types:

◮ constrain the behavior of programs

◮ thus lead to interesting theorems about programs

◮ combine well with algebraic techniques, equational reasoning

On the programming language side:

◮ push towards full programming languages

◮ strife for more expressive type systems

On the practical side:

◮ efficiency-improving program transformations

◮ applications in specific domains

13
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