Type-Based Reasoning
and
Bidirectional Transformation

Janis Voigtlander

Technische Universitat Dresden

February 20th, 2009

Polymorphic Types: An Example in Haskell

A standard function:

map = (o — B) — [a] — [5]
map f [] =[]
map f (a:as) = (f a): (map f as)

Polymorphic Types: An Example in Haskell

A standard function:

map = (o — B) — [a] — [5]

map f [] =[]

map f (a:as) = (f a): (map f as)
Some invocations:

map succ [1,2,3] =[2,3,4] — a, f — Int, Int

Polymorphic Types: An Example in Haskell

A standard function:

map = (o — B) — [a] — [5]
map f [] =[]
map f (a:as) = (f a): (map f as)

Some invocations:
map succ [1,2,3] =[2,3,4] — a, f — Int, Int

map not [True, False] = [False, True] — a, 3 — Bool, Bool

Polymorphic Types: An Example in Haskell
A standard function:

map = (o — B) — [a] — [5]
map f [] =[]
map f (a:as) = (f a): (map f as)

Some invocations:
map succ [1,2,3] =[2,3,4] — a, f — Int, Int
map not [True, False] = [False, True] — a, 3 — Bool, Bool

map even [1,2,3] = [False, True, False] — «, B — Int, Bool

Polymorphic Types: An Example in Haskell

A standard function:
map = (o — B) — [a] — [5]

map f [] =[]
map f (a:as) = (f a): (map f as)

Some invocations:

map succ [1,2,3] =[2,3,4] — a, f — Int, Int
map not [True, False] = [False, True] — a, 3 — Bool, Bool
map even [1,2,3] = [False, True, False] — «, 8+ Int, Bool

map not [1,2,3]

Polymorphic Types: An Example in Haskell

A standard function:
map = (o — B) — [a] — [5]

map f [] =[]
map f (a:as) = (f a): (map f as)

Some invocations:

map succ [1,2,3] =[2,3,4] — a, f — Int, Int
map not [True, False] = [False, True] — a, 3 — Bool, Bool
map even [1,2,3] = [False, True, False] — «, 8+ Int, Bool

map not [1,2,3] 4 rejected at compile-time

Another Example

takeWhile :: (& — Bool) — [a] — [a]

takeWhile p [] =]

takeWhile p (a:as) | pa = a: (takeWhile p as)
| otherwise =]

Another Example

takeWhile :: (& — Bool) — [a] — [a]

takeWhile p [] =]

takeWhile p (a:as) | pa = a: (takeWhile p as)
| otherwise =]

For every choice of p, f, and /:
takeWhile p (map f /) = map f (takeWhile (pof) /)

Provable by induction.

Another Example

takeWhile :: (& — Bool) — [a] — [a]

takeWhile p [] =]

takeWhile p (a:as) | pa = a: (takeWhile p as)
| otherwise =]

For every choice of p, f, and I:
takeWhile p (map f /) = map f (takeWhile (pof) /)
Provable by induction.

Or as a “free theorem” [Wadler, FPCA'89].

Another Example

takeWhile :: (& — Bool) — [a] — [a]

For every choice of p, f, and I:
takeWhile p (map f /) = map f (takeWhile (pof) /)
Provable by induction.

Or as a “free theorem” [Wadler, FPCA'89].

Another Example

takeWhile :: (& — Bool) — [a] — [a]

filter:: (a — Bool) — [a] — [q]

For every choice of p, f, and /:
takeWhile p (map f /) = map f (takeWhile (pof) /)

filter p (map f /) = map f (filter (pof) /)

Another Example

takeWhile :: (& — Bool) — [a] — [a]
filter:: (a — Bool) — [a] — [q]

g (a0 — Bool) = [a] — [q]

For every choice of p, f, and /:
takeWhile p (map f /) = map f (takeWhile (pof) /)
filter p (map f /) = map f (filter (pof) /)

gp(map f 1) = mapf (g(pof)l)

Why, Intuitively

» g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.

Why, Intuitively

> g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

Why, Intuitively

> g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

Why, Intuitively

> g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

Why, Intuitively

> g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map f /) and / always have equal length.

Why, Intuitively

> g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map f /) and / always have equal length.

» Applying p to an element of (map f /) always has the same
outcome as applying (po f) to the corresponding element of /.

Why, Intuitively

> g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map f /) and / always have equal length.
» Applying p to an element of (map f /) always has the same
outcome as applying (po f) to the corresponding element of /.

» g with p always chooses “the same” elements from (map f /)
for output as does g with (p o f) from /,

Why, Intuitively

> g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map f /) and / always have equal length.

» Applying p to an element of (map f /) always has the same
outcome as applying (po f) to the corresponding element of /.

» g with p always chooses “the same” elements from (map f /)
for output as does g with (p o f) from /, except that it
outputs their images under f.

Why, Intuitively

>

g :: (& — Bool) — [a] — [a] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided

based on / and the input predicate p.

The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map f /) and / always have equal length.

» Applying p to an element of (map f /) always has the same

v

outcome as applying (po f) to the corresponding element of /.

g with p always chooses “the same” elements from (map f /)
for output as does g with (p o f) from /, except that it
outputs their images under f.

(g p (map f 1)) is equivalent to (map 7 (g (pof) I)).

Why, Intuitively

> g (o — Bool) — [a] — [a] must work uniformly for every
instantiation of «.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided
based on / and the input predicate p.

» The only means for this decision are to inspect the length of /
and to check the outcome of p on its elements.

» The lists (map f /) and / always have equal length.

» Applying p to an element of (map f /) always has the same
outcome as applying (po f) to the corresponding element of /.

» g with p always chooses “the same” elements from (map f /)
for output as does g with (p o f) from /, except that it
outputs their images under f.

» (g p (map f 1)) is equivalent to (map f (g (po f) /)).

» That is what was claimed!

Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/~voigt/ft:

This tool allows to generate free theorems for sublanguages of Haskell as described here.

The source code of the underlying library and a shell-based application using it is available
here and here.

Please enter a (polymorphic) type, e.g. "(a -> Bool) -> [a] -> [a]" or simply "filter":

[(a -> Bool) -> [a] -> [a]|

Please choose a sublanguage of Haskell:

® no bottoms (hence no general recursion and no selective strictness)

® general recursion but no selective strictness

® general recursion and selective strictness

Please choose a theorem style (without effect in the sublanguage with no bottoms):
® equational

®inequational

Generate

http://linux.tcs.inf.tu-dresden.de/~voigt/ft

Automatic Generation of Free Theorems

The theorem generated for functions of the type

‘g :: forall a . (a -> Bool) -> [a] -> [a]

in the sublanguage of Haskell with no bottoms is:

forall t1,t2 in TYPES, R in REL(tl,t2).
forall p :: tl -> Bool.
forall q :: t2 -> Bool.
(forall (x, y) in R. p x = q vy)
==> (forall (z, v) in Wift{[]}(R).
(g pz, gaqv)in LEFL{[]}(R))

The structural lifting occurring therein is defined as follows:

llft{[]} R)
{1, [}
u {(x : xs, y

Lys) |
((x, y) in R) && ((xs, ys) in Wft{[1}(R))}

Reducing all permissible relation variables to functions yields:

forall t1,t2 in TYPES, f :: tl -> t2.
forall p :: tl -> Bool.
forall q :: t2 -> Bool.
(forall x :: tl. p x = q (f x))
==> (forall y :: [tl]. map f (g p y) =g q (map f y))

Export as PDF Show type instantiations | Enter a new type Help page

DFG-Project VO 1512/1-1

Free theorems
e POPL'04
e TCS'07

e 1&C'09

DFG-Project VO 1512/1-1

Free theorems
e POPL'04
e TCS'07

e 1&C'09

Program trans-
formations

e ICFP'02

e FLOPS'08
e MPC'08

DFG-Project VO 1512/1-1

Free theorems
e POPL'04
e TCS'07

e 1&C'09

Program trans-
formations

e ICFP'02

e FLOPS'08
e MPC'08

DFG-Project VO 1512/1-1

Free theorems
e POPL'04
e TCS'07

e 1&C'09

Program trans-

formations Applications
e ICFP'02 e POPL'08
e FLOPS'08 e POPL'09

e MPC'08

DFG-Project VO 1512/1-1

Free theorems
e POPL'04
e TCS'07

e 1&C'09

Program trans-

formations Applications
e ICFP'02 e POPL'08
e FLOPS'08

e POPL'09
e MPC'08

DFG-Project VO 1512/1-1

Free theorems
e POPL'04
e TCS'07

e 1&C'09

Program trans-

formations Applications
e ICFP'02 e POPL'08
e FLOPS'08

e POPL'09
e MPC'08

Bidirectional Transformation

source view

get

Bidirectional Transformation

source

get

view

update

Bidirectional Transformation

source

get

put

view

update

Bidirectional Transformation

source

get

A

put

view

update

Bidirectional Transformation

source view

get

Acceptability / GetPut

Bidirectional Transformation

source view

get

4

put

Acceptability / GetPut

Bidirectional Transformation

source view

get

update

A

put

Consistency / PutGet

Bidirectional Transformation

source view
get R
update
< put
_/
get

Consistency / PutGet

Bidirectional Transformation

source

get

A

put

view

update

Bidirectional Transformation

source A view
4 N\
’ o\
’ \
get\
7 v >
] \
] \
] \
] \
' \
i \
0 [update
']
\ '
['
\ '
\]
\]
\]
\ y)
\put,
\ (4
N/
v

Lenses, DSLs
[Foster et al., ACM TOPLAS'07, ...]

Bidirectional Transformation

source view

get

update

Pt A

Bidirectionalization
[Matsuda et al., ICFP'07]

A

Bidirectional Transformation

source view

get

3

update

drrccccccccca=

A
o
o
"

Syntactic Bidirectionalization
[Matsuda et al., ICFP'07]

Bidirectional Transformation

source view

get

JE

update

drrccccccccca=

-~

A

put

Semantic Bidirectionalization

Bidirectional Transformation

source view

get

JE

update

drrccccccccca=

N

put

Semantic Bidirectionalization
[V., POPL'09]

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,
Examples:

" tail

abc > “bc”

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,
Examples:

" tail

abc > “bc”

update

‘e

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:
“abCH tall ; HbC”
update
v
“ade” = “de”

bff tail

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,
Examples:

flatten

> “abac”
lal lb! laY ICY

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,
Examples:

flatten

v

uabacn
lav lbv Aav xcv

update

ua bXC”

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:
flatten o "
*> “abac
lal lb! laY ICY
update
\
< “abxc”

A bff flatten
a' ‘b’ 'x' ‘c

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,
Examples:

nuboflatten _ u
> “abc

lav xbv Aav xcv

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,
Examples:

nuboflatten _ u
> “abc

lav xbv Aav xcv

update

“xbc”

Semantic Bidirectionalization

Aim: Write a higher-order function bff such that any
get and bff get satisfy GetPut, PutGet,

Examples:
nuboflatten o "
*> “abc
lal lb! laY ICY
update
v
< “Xbc”

AR bff (nuboflatten)
x" ‘b’ 'x" ‘c

Analyzing Specific Instances

Assume we are given some
get 11 [o] — [a]

How can we, or bff, analyze it without access to its source code?

Analyzing Specific Instances

Assume we are given some
get = [a] — [q]
How can we, or bff, analyze it without access to its source code?

Idea: How about applying get to some input?

Analyzing Specific Instances
Assume we are given some
get 11 [o] — [a]
How can we, or bff, analyze it without access to its source code?
Idea: How about applying get to some input?
Like:

[1..n] if get = tail
[n..0] if get = reverse
get [0..n] = [0..(min 4 n)] if get = take 5

Analyzing Specific Instances

Assume we are given some
get = [a] — [q]
How can we, or bff, analyze it without access to its source code?

Idea: How about applying get to some input?
Like:

[1..n] if get = tail
[n..0] if get = reverse
get [0..n] = [0..(min 4 n)] if get = take 5

Then transfer the gained insights to source lists other than [0..n] !

Using a Free Theorem

For every
get 2 [a] — [a]
we have
map f (get /) = get (map f /)
for arbitrary f and /, where
map :: (o — B) — [o] — [0]

map f [] =[]
map f (a:as) = (f a): (map f as)

Using a Free Theorem

For every
get 2 [a] — [a]

we have
map f (get /) = get (map f /)

for arbitrary f and /, where

map :: (@ — B) — [a] — [I]
map f (] =[]
map f (a:as) = (f a): (map f as)

Given an arbitrary list s of length n+ 1, set f = (s!!), / = [0..n],
leading to:

map (s!!) (get [0..n]) = get (map (s!!) [0..n])

Using a Free Theorem

For every
get 2 [a] — [a]

we have
map f (get /) = get (map f /)

for arbitrary f and /, where
map :: (o — B) — [o] — [0]

map f [] =[]
map f (a:as) = (f a): (map f as)

Given an arbitrary list s of length n+ 1, set f = (s!!), / = [0..n],
leading to:

map (s!!) (get [0..n]) = get (map (s!!) [0..n])
= get s

Using a Free Theorem

For every
get 2 [a] — [a]

we have
map f (get /) = get (map f /)

for arbitrary f and /, where
map :: (o — B) — [o] — [0]

map f [] =[]
map f (a:as) = (f a): (map f as)

Given an arbitrary list s of length n+ 1,

map (s!!) (get [0..n])
= gets

Using a Free Theorem

For every
get 2 [a] — [a]

we have
map f (get /) = get (map f /)

for arbitrary f and /, where

map :: (@ — B) — [a] — [I]
map f (] =[]
map f (a:as) = (f a): (map f as)

Given an arbitrary list s of length n+ 1,

get s = map (s!!) (get [0..n])

The Resulting Bidirectionalization Scheme by Example

tailoflatten " "

xby xal ACI xal

update

bff (tailoflatten)

10

The Resulting Bidirectionalization Scheme by Example

? - “xca"

bff (tailoflatten)

10

The Resulting Bidirectionalization Scheme by Example

0123

xby xal ACI xav

“ "
XCa

10

The Resulting Bidirectionalization Scheme by Example

0— b

2 — ¢

l

3—

“ ”
XCa

10

The Resulting Bidirectionalization Scheme by Example

tailoflatten . [123]
012 3

0—'b

11—

—_—

(3 P R B T A B | 24}‘C’
b' ‘a’ ‘c’ ‘a .

3—"a

10

The Resulting Bidirectionalization Scheme by Example

tailoflatten . [123]
012 3
0—'b
11—
—_—
(3 P R B T A B | 24}‘(:,
b' ‘a’ ‘c’ ‘a .
3—"a
1— %
2 —'c
3—1a

XCa

10

The Resulting Bidirectionalization Scheme by Example

tailoflatten . [123]
012 3

00—

2 —
lbl lal ACI lal

H
!
o S

3 —

0—

1 — ‘%

2 —

H
!
o 6 Ko

3 — 'y

- AN

XCa

10

The Resulting Bidirectionalization Scheme by Example

tailoflatten . [1 2 3]

0123

00—

2 —

H
!
o S

xby xal ACI xal 3 .

0—

1 — ‘%

2 —

H
!
o 6 Ko

3 — 'y

. N

XCa

X C a

10

The Resulting Bidirectionalization Scheme by Example

m) bff (tailoflatten) xea

xby ‘X, ACI xav

10

The Resulting Bidirectionalization Scheme by Example

tailoflatten . [1 2 3]

0123

00—

2 —

H
!
o S

xby xal ACI xal 3 .

0—

1 — ‘%

2 —

H
!
o 6 Ko

3 — 'y

. N

XCa

X C a

10

The Implementation (here: lists only, inefficient version)

bff get s v/ =let n = (lengths)—1

t =[0..n]

g =zipts

h = assoc (get t) v/
W=h+g

in seq h (map (Ai — fromJust (lookup i h')) t)

assoc[]] =1
assoc (i : is) (b: bs) = let m = assoc is bs
in case lookup /i m of
Nothing — (i,b) :m
Justc|b==c—m

11

The Implementation (here: lists only, inefficient version)

bff get s v/ =let n = (lengths)—1

t =[0..n]

g =zipts

h = assoc (get t) v/
W=h+g

in seq h (map (Ai — fromJust (lookup i h')) t)

assoc[]] =1
assoc (i : is) (b: bs) = let m = assoc is bs
in case lookup /i m of
Nothing — (i,b) :m
Justc|b==c—m

» actual code only slightly more elaborate

» online: http://linux.tcs.inf.tu-dresden.de/~bff

11

http://linux.tcs.inf.tu-dresden.de/~bff

Another Interesting Example

nuboflatten

Aal xby xay xcy

bff (nuboflatten)

xbc

> uabcu

update

12

Another Interesting Example

010 2

Aal xby xay xcy

0
1—b
5

xbc

12

Another Interesting Example

nuboflatten . [0 1 2]
010 2
0—‘a
—_— |1 =D
Aal lbl lal lcl 2 — lcl

xbc

Another Interesting Example

010 2

Aal xby xay xcy

nuboflatten

0
1—b
5

0
1— b
5 i

> [0,1,2]

xbc

12

Another Interesting Example

nuboflatten > [0,1,2]
010 2

0o—"

_m<

Aal lbl [al [cl 2 — lcl
0= P
1= b |+ |1—"b
2 - ¢ 2 — ¢

xbc

12

Another Interesting Example

nuboflatten . [0 1 2]

010 2

0o—"

_m<

Aal lbl [al [cl 2 — lcl
0= P
1= b | |1—=b

/2—>'c' 2— ¢

xbc

X X C

12

Summary and Outlook

Types:
» constrain the behavior of programs

13

Summary and Outlook

Types:
» constrain the behavior of programs

» thus lead to interesting theorems about programs

13

Summary and Outlook

Types:
» constrain the behavior of programs
» thus lead to interesting theorems about programs

» combine well with algebraic techniques, equational reasoning

13

Summary and Outlook

Types:
» constrain the behavior of programs
» thus lead to interesting theorems about programs

» combine well with algebraic techniques, equational reasoning

On the programming language side:

» push towards full programming languages

13

Summary and Outlook

Types:
» constrain the behavior of programs
» thus lead to interesting theorems about programs

» combine well with algebraic techniques, equational reasoning

On the programming language side:
» push towards full programming languages

» strife for more expressive type systems

13

Summary and Outlook

Types:
» constrain the behavior of programs
» thus lead to interesting theorems about programs

» combine well with algebraic techniques, equational reasoning

On the programming language side:
» push towards full programming languages

» strife for more expressive type systems

On the practical side:

» efficiency-improving program transformations

13

Summary and Outlook

Types:
» constrain the behavior of programs
» thus lead to interesting theorems about programs

» combine well with algebraic techniques, equational reasoning

On the programming language side:
» push towards full programming languages

» strife for more expressive type systems

On the practical side:
» efficiency-improving program transformations

» applications in specific domains

13

References |

@ F. Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557-575, 1981.

@ J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and
A. Schmitt.
Combinators for bidirectional tree transformations: A linguistic
approach to the view-update problem.
ACM Transactions on Programming Languages and Systems,
29(3):17, 2007.

@ P. Hudak, R.J.M. Hughes, S.L. Peyton Jones, and P. Wadler.
A history of Haskell: Being lazy with class.
In History of Programming Languages, Proceedings, pages
12-1-12-55. ACM Press, 2007.

References |l

[l K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic
derivation of view complement functions.

In International Conference on Functional Programming,
Proceedings, pages 47-58. ACM Press, 2007.

@ J. Voigtlander.
Bidirectionalization for free!
In Principles of Programming Languages, Proceedings, pages
165-176. ACM Press, 2009.

@ P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

15

	Free Theorems
	Bidirectional Transformation
	Semantic Bidirectionalization

