
Discovering Counterexamples (and Proof
Ingredients) for Knuth-like 0-1-. . . -k-Principles

Moritz Fürneisen and Janis Voigtländer

University of Bonn

October 9th, 2012

Knuth’s 0-1-Principle [Knuth 1973]

Informally: If a comparison-swap algorithm sorts Booleans
correctly, it sorts integers correctly as well.

Formally: Let (in Haskell, say):

sort :: ((α, α)→ (α, α))→ [α]→ [α]

f :: (Int, Int)→ (Int, Int)
f (x , y) = if x > y then (y , x) else (x , y)

g :: (Bool,Bool)→ (Bool,Bool)
g (x , y) = (x && y , x || y)

If for every xs :: [Bool], sort g xs gives the correct
result, then for every xs :: [Int], sort f xs gives the
correct result.

1

Parallel Prefix Computation

Given: inputs x1, . . . , xn and an associative operation ⊕

Task: compute the values x1, x1 ⊕ x2, . . . , x1 ⊕ x2 ⊕ · · · ⊕ xn

Solution: x1 x2 x3 x4 x5 x6 x7 x8

⊕
⊕

⊕
⊕

⊕
⊕

⊕

2

Parallel Prefix Computation

Alternative: x1 x2 x3 x4 x5 x6 x7 x8

⊕
⊕

⊕
⊕

⊕

⊕

⊕
⊕
⊕

⊕
⊕
⊕

Or: x1 x2 x3 x4 x5 x6 x7 x8

⊕

⊕

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕
⊕

Or: . . .
3

Expressing Parallel Prefix Algorithms in Haskell

Functions of type:

scanl1 :: (α→ α→ α)→ [α]→ [α]

For example, à la [Sklansky 1960]:

sklansky :: (α→ α→ α)→ [α]→ [α]
sklansky (⊕) [x] = [x]
sklansky (⊕) xs = us ++ vs

where t = ((length xs) + 1) ‘div‘ 2
(ys, zs) = splitAt t xs
us = sklansky (⊕) ys
vs = [(last us)⊕ v | v ← sklansky (⊕) zs]

4

Investigating Particular Instances Only

Knuth’s 0-1-Principle

If a comparison-swap algorithm sorts correctly on the Booleans,
it does so on arbitrary totally ordered value sets.

A Knuth-like 0-1-Principle ?

If a parallel prefix algorithm is correct (for associative operations)
on the Booleans, it is so on arbitrary value sets.

Unfortunately not !

Let’s:

I try to find out why not,

I and why 0-1-2 makes more sense to attempt proving,

I and let’s try to do all that without pulling too many rabbits.

8

A Knuth-like 0-1-2-Principle [V. 2008]

Given: scanl1 :: (α→ α→ α)→ [α]→ [α]
scanl1 (⊕) (x : xs) = go x xs

where go x [] = [x]
go x (y : ys) = x : (go (x ⊕ y) ys)

candidate :: (α→ α→ α)→ [α]→ [α]

data Three = Zero | One | Two

Theorem: If for every xs :: [Three] and associative
(⊕) :: Three→ Three→ Three,

candidate (⊕) xs = scanl1 (⊕) xs ,

then the same holds for every type τ , xs :: [τ], and
associative (⊕) :: τ → τ → τ .

9

Why 0-1-2? And How?

I To get going, proof uses parametricity [Reynolds 1983],
deriving a “free theorem” [Wadler 1989].

I Proof crucially involves two specific associative functions:

⊕1 Zero One Two
Zero Zero One Two
One One Two Two
Two Two Two Two

and

⊕2 Zero One Two
Zero Zero One Two
One One One Two
Two Two One Two

and their behavior on lists [(Zero,)∗ One (,Zero)∗ (,Two)∗]

and [(Zero,)∗ One,Two (,Zero)∗], respectively.

I Formalisation available in Isabelle/HOL [Böhme 2007].

But:

I Does that really explain the why and how?

I What to do to get similar results for other algorithm classes?

10

Plan of the Talk

I Start telling the story of how “0-1-2”, ⊕1, ⊕2, . . . were found
(back in 2007, never recorded, but interesting I think).

I Challenge you to suggest other approaches to discover the
required counterexamples and proof ingredients?

I Invite complaints about where the presented (deliberately
naive, exploratory) approach is too ad-hoc, or unacceptably
pulls a rabbit out of a hat.

I Provoke investigation/proposals of other algorithm classes on
which one could try to play the same or similar trick(s)?

11

Investigating Particular Instances Only

Knuth’s 0-1-Principle

If a comparison-swap algorithm sorts correctly on the Booleans,
it does so on arbitrary totally ordered value sets.

A Knuth-like 0-1-Principle ?

If a parallel prefix algorithm is correct (for associative operations)
on the Booleans, it is so on arbitrary value sets.

Unfortunately not !

Let’s:

I try to find out why not,

I and why 0-1-2 makes more sense to attempt proving,

I and let’s try to do all that without pulling too many rabbits.

12

Investigating Particular Instances Only

Knuth’s 0-1-Principle

If a comparison-swap algorithm sorts correctly on the Booleans,
it does so on arbitrary totally ordered value sets.

A Knuth-like 0-1-Principle ?

If a parallel prefix algorithm is correct (for associative operations)
on the Booleans, it is so on arbitrary value sets.

Unfortunately not !

Let’s:

I try to find out why not,

I and why 0-1-2 makes more sense to attempt proving,

I and let’s try to do all that without pulling too many rabbits.

12

Investigating Particular Instances Only

Knuth’s 0-1-Principle

If a comparison-swap algorithm sorts correctly on the Booleans,
it does so on arbitrary totally ordered value sets.

A Knuth-like 0-1-Principle ?

If a parallel prefix algorithm is correct (for associative operations)
on the Booleans, it is so on arbitrary value sets.

Unfortunately not !

Let’s:

I try to find out why not,

I and why 0-1-2 makes more sense to attempt proving,

I and let’s try to do all that without pulling too many rabbits.

12

Investigating Particular Instances Only

Knuth’s 0-1-Principle

If a comparison-swap algorithm sorts correctly on the Booleans,
it does so on arbitrary totally ordered value sets.

A Knuth-like 0-1-Principle ?

If a parallel prefix algorithm is correct (for associative operations)
on the Booleans, it is so on arbitrary value sets.

Unfortunately not !

Let’s:

I try to find out why not,

I and why 0-1-2 makes more sense to attempt proving,

I and let’s try to do all that without pulling too many rabbits.

12

What a Knuth-like 0-1-Principle Would Be

Given: scanl1 :: (α→ α→ α)→ [α]→ [α]
scanl1 (⊕) (x : xs) = go x xs

where go x [] = [x]
go x (y : ys) = x : (go (x ⊕ y) ys)

candidate :: (α→ α→ α)→ [α]→ [α]

Theorem?: If for every associative (⊕) :: Bool→ Bool→ Bool
and xs :: [Bool],

candidate (⊕) xs = scanl1 (⊕) xs ,

then the same holds for every type τ , associative
(⊕) :: τ → τ → τ , and xs :: [τ].

Let’s try to find a counterexample by property-based testing.

13

What a Knuth-like 0-1-Principle Would Be

Given: scanl1 :: (α→ α→ α)→ [α]→ [α]
scanl1 (⊕) (x : xs) = go x xs

where go x [] = [x]
go x (y : ys) = x : (go (x ⊕ y) ys)

candidate :: (α→ α→ α)→ [α]→ [α]

Theorem?: If for every associative (⊕) :: Bool→ Bool→ Bool
and xs :: [Bool],

candidate (⊕) xs = scanl1 (⊕) xs ,

then the same holds for every type τ , associative
(⊕) :: τ → τ → τ , and xs :: [τ].

Let’s try to find a counterexample by property-based testing.

13

Getting Started

Somewhat naive expression of our intent:

quickCheck $ λ(candidate :: (α→ α→ α)→ [α]→ [α])→
(forAll associative $ λ((⊕) :: Bool→ Bool→ Bool)→
λxs :: [Bool]→ candidate (⊕) xs == scanl1 (⊕) xs)

==>
∀τ. (forAll associative $ λ((⊕) :: τ → τ → τ)→

λxs :: [τ]→ candidate (⊕) xs == scanl1 (⊕) xs)

Hmm, this is problematic in so many ways!

I generating (polymorphic) functions?

I randomness vs. exhaustiveness?

I a complex property as precondition of “==>”?

I generating/picking the type τ?

14

Getting Started

Somewhat naive expression of our intent:

quickCheck $ λ(candidate :: (α→ α→ α)→ [α]→ [α])→
(forAll associative $ λ((⊕) :: Bool→ Bool→ Bool)→
λxs :: [Bool]→ candidate (⊕) xs == scanl1 (⊕) xs)

==>
∀τ. (forAll associative $ λ((⊕) :: τ → τ → τ)→

λxs :: [τ]→ candidate (⊕) xs == scanl1 (⊕) xs)

Hmm, this is problematic in so many ways!

I generating (polymorphic) functions?

I randomness vs. exhaustiveness?

I a complex property as precondition of “==>”?

I generating/picking the type τ?

14

Getting Started

Somewhat naive expression of our intent:

quickCheck $ λ(candidate :: (α→ α→ α)→ [α]→ [α])→
(forAll associative $ λ((⊕) :: Bool→ Bool→ Bool)→
λxs :: [Bool]→ candidate (⊕) xs == scanl1 (⊕) xs)

==>
∀τ. (forAll associative $ λ((⊕) :: τ → τ → τ)→

λxs :: [τ]→ candidate (⊕) xs == scanl1 (⊕) xs)

Hmm, this is problematic in so many ways!

I generating (polymorphic) functions?

I randomness vs. exhaustiveness?

I a complex property as precondition of “==>”?

I generating/picking the type τ?

14

Getting Started

Somewhat naive expression of our intent:

quickCheck $ λ(candidate :: (α→ α→ α)→ [α]→ [α])→
(forAll associative $ λ((⊕) :: Bool→ Bool→ Bool)→
λxs :: [Bool]→ candidate (⊕) xs == scanl1 (⊕) xs)

==>
∀τ. (forAll associative $ λ((⊕) :: τ → τ → τ)→

λxs :: [τ]→ candidate (⊕) xs == scanl1 (⊕) xs)

Hmm, this is problematic in so many ways!

I generating (polymorphic) functions?

I randomness vs. exhaustiveness?

I a complex property as precondition of “==>”?

I generating/picking the type τ?

14

Getting Started

Somewhat naive expression of our intent:

quickCheck $ λ(candidate :: (α→ α→ α)→ [α]→ [α])→
(forAll associative $ λ((⊕) :: Bool→ Bool→ Bool)→
λxs :: [Bool]→ candidate (⊕) xs == scanl1 (⊕) xs)

==>
∀τ. (forAll associative $ λ((⊕) :: τ → τ → τ)→

λxs :: [τ]→ candidate (⊕) xs == scanl1 (⊕) xs)

Hmm, this is problematic in so many ways!

I generating (polymorphic) functions?

I randomness vs. exhaustiveness?

I a complex property as precondition of “==>”?

I generating/picking the type τ?

14

Getting Started

Somewhat naive expression of our intent:

quickCheck $ λ(candidate :: (α→ α→ α)→ [α]→ [α])→
(forAll associative $ λ((⊕) :: Bool→ Bool→ Bool)→
λxs :: [Bool]→ candidate (⊕) xs == scanl1 (⊕) xs)

==>
∀τ. (forAll associative $ λ((⊕) :: τ → τ → τ)→

λxs :: [τ]→ candidate (⊕) xs == scanl1 (⊕) xs)

Hmm, this is problematic in so many ways!

I generating (polymorphic) functions?

I randomness vs. exhaustiveness?

I a complex property as precondition of “==>”?

I generating/picking the type τ?

14

Transforming Polymorphism Away

Let’s try to get a grip on candidate :: (α→ α→ α)→ [α]→ [α].

A question: What can such a function do, given an operation ⊕
and input list [x0, . . . , xn−1] ?

The answer: Create an output list consisting of “expressions” built
from ⊕ and x0, . . . , xn−1.
Independently of the α-type !
But dependent on the input list length n !

So, to any candidate as above corresponds a function of type
Nat→ [Expr], where

data Expr = Var Nat | Op Expr Expr

We can prove this (almost) isomorphism using parametricity/“free
theorems” [Reynolds 1983, Wadler 1989], and can actually
program appropriate conversions.

15

Transforming Polymorphism Away

Let’s try to get a grip on candidate :: (α→ α→ α)→ [α]→ [α].

A question: What can such a function do, given an operation ⊕
and input list [x0, . . . , xn−1] ?

The answer: Create an output list consisting of “expressions” built
from ⊕ and x0, . . . , xn−1.
Independently of the α-type !
But dependent on the input list length n !

So, to any candidate as above corresponds a function of type
Nat→ [Expr], where

data Expr = Var Nat | Op Expr Expr

We can prove this (almost) isomorphism using parametricity/“free
theorems” [Reynolds 1983, Wadler 1989], and can actually
program appropriate conversions.

15

Transforming Polymorphism Away

Let’s try to get a grip on candidate :: (α→ α→ α)→ [α]→ [α].

A question: What can such a function do, given an operation ⊕
and input list [x0, . . . , xn−1] ?

The answer: Create an output list consisting of “expressions” built
from ⊕ and x0, . . . , xn−1.
Independently of the α-type !

But dependent on the input list length n !

So, to any candidate as above corresponds a function of type
Nat→ [Expr], where

data Expr = Var Nat | Op Expr Expr

We can prove this (almost) isomorphism using parametricity/“free
theorems” [Reynolds 1983, Wadler 1989], and can actually
program appropriate conversions.

15

Transforming Polymorphism Away

Let’s try to get a grip on candidate :: (α→ α→ α)→ [α]→ [α].

A question: What can such a function do, given an operation ⊕
and input list [x0, . . . , xn−1] ?

The answer: Create an output list consisting of “expressions” built
from ⊕ and x0, . . . , xn−1.
Independently of the α-type !
But dependent on the input list length n !

So, to any candidate as above corresponds a function of type
Nat→ [Expr], where

data Expr = Var Nat | Op Expr Expr

We can prove this (almost) isomorphism using parametricity/“free
theorems” [Reynolds 1983, Wadler 1989], and can actually
program appropriate conversions.

15

Transforming Polymorphism Away

Let’s try to get a grip on candidate :: (α→ α→ α)→ [α]→ [α].

A question: What can such a function do, given an operation ⊕
and input list [x0, . . . , xn−1] ?

The answer: Create an output list consisting of “expressions” built
from ⊕ and x0, . . . , xn−1.
Independently of the α-type !
But dependent on the input list length n !

So, to any candidate as above corresponds a function of type
Nat→ [Expr], where

data Expr = Var Nat | Op Expr Expr

We can prove this (almost) isomorphism using parametricity/“free
theorems” [Reynolds 1983, Wadler 1989], and can actually
program appropriate conversions.

15

Transforming Polymorphism Away

Let’s try to get a grip on candidate :: (α→ α→ α)→ [α]→ [α].

A question: What can such a function do, given an operation ⊕
and input list [x0, . . . , xn−1] ?

The answer: Create an output list consisting of “expressions” built
from ⊕ and x0, . . . , xn−1.
Independently of the α-type !
But dependent on the input list length n !

So, to any candidate as above corresponds a function of type
Nat→ [Expr], where

data Expr = Var Nat | Op Expr Expr

We can prove this (almost) isomorphism using parametricity/“free
theorems” [Reynolds 1983, Wadler 1989], and can actually
program appropriate conversions.

15

Where Are We Now?

To test:

quickCheck $ λ(representation :: Nat→ [Expr])→
(forAll associative $ λ((⊕) :: Bool→ Bool→ Bool)→
λxs :: [Bool]→ . . .)

==>
∀τ. (forAll associative $ λ((⊕) :: τ → τ → τ)→

λxs :: [τ]→ . . .)

The standard (QuickCheck) approach here, for dealing with
Nat→ [Expr], would be:

I generate essentially partial functions, that

I take on a “useful”/“used” result only for finitely many inputs,

I while choosing some default for all others.

That idea is basically fine here, but we actually need some more
control because of our need to check the complex precondition.

16

Where Are We Now?

To test:

quickCheck $ λ(representation :: Nat→ [Expr])→
(forAll associative $ λ((⊕) :: Bool→ Bool→ Bool)→
λxs :: [Bool]→ . . .)

==>
∀τ. (forAll associative $ λ((⊕) :: τ → τ → τ)→

λxs :: [τ]→ . . .)

The standard (QuickCheck) approach here, for dealing with
Nat→ [Expr], would be:

I generate essentially partial functions

, that

I take on a “useful”/“used” result only for finitely many inputs,

I while choosing some default for all others.

That idea is basically fine here, but we actually need some more
control because of our need to check the complex precondition.

16

Where Are We Now?

To test:

quickCheck $ λ(representation :: Nat→ [Expr])→
(forAll associative $ λ((⊕) :: Bool→ Bool→ Bool)→
λxs :: [Bool]→ . . .)

==>
∀τ. (forAll associative $ λ((⊕) :: τ → τ → τ)→

λxs :: [τ]→ . . .)

The standard (QuickCheck) approach here, for dealing with
Nat→ [Expr], would be:

I generate essentially partial functions, that

I take on a “useful”/“used” result only for finitely many inputs

,

I while choosing some default for all others.

That idea is basically fine here, but we actually need some more
control because of our need to check the complex precondition.

16

Where Are We Now?

To test:

quickCheck $ λ(representation :: Nat→ [Expr])→
(forAll associative $ λ((⊕) :: Bool→ Bool→ Bool)→
λxs :: [Bool]→ . . .)

==>
∀τ. (forAll associative $ λ((⊕) :: τ → τ → τ)→

λxs :: [τ]→ . . .)

The standard (QuickCheck) approach here, for dealing with
Nat→ [Expr], would be:

I generate essentially partial functions, that

I take on a “useful”/“used” result only for finitely many inputs,

I while choosing some default for all others.

That idea is basically fine here, but we actually need some more
control because of our need to check the complex precondition.

16

Where Are We Now?

To test:

quickCheck $ λ(representation :: Nat→ [Expr])→
(forAll associative $ λ((⊕) :: Bool→ Bool→ Bool)→
λxs :: [Bool]→ . . .)

==>
∀τ. (forAll associative $ λ((⊕) :: τ → τ → τ)→

λxs :: [τ]→ . . .)

The standard (QuickCheck) approach here, for dealing with
Nat→ [Expr], would be:

I generate essentially partial functions, that

I take on a “useful”/“used” result only for finitely many inputs,

I while choosing some default for all others.

That idea is basically fine here, but we actually need some more
control because of our need to check the complex precondition.

16

Making Partiality Explicit (and “Fixing the Default”)

We go from Nat→ [Expr] to Nat→ Maybe [Expr],
with the interpretation that

representation n = Nothing

means to take on the scanl1-behavior for lists of length n.

For example,

representation :: Nat→ Maybe [Expr]
representation n | n== 1 = Just [Op (Var 0) (Var 0)]

| n== 3 = Just [Var 0
,Op (Var 1) (Var 2)]

| otherwise = Nothing

corresponds to

candidate :: (α→ α→ α)→ [α]→ [α]
candidate (⊕) [x] = [x ⊕ x]
candidate (⊕) [x , y , z] = [x , y ⊕ z]
candidate (⊕) xs = scanl1 (⊕) xs

17

Making Partiality Explicit (and “Fixing the Default”)

We go from Nat→ [Expr] to Nat→ Maybe [Expr],
with the interpretation that

representation n = Nothing

means to take on the scanl1-behavior for lists of length n.

For example,

representation :: Nat→ Maybe [Expr]
representation n | n== 1 = Just [Op (Var 0) (Var 0)]

| n== 3 = Just [Var 0
,Op (Var 1) (Var 2)]

| otherwise = Nothing

corresponds to

candidate :: (α→ α→ α)→ [α]→ [α]
candidate (⊕) [x] = [x ⊕ x]
candidate (⊕) [x , y , z] = [x , y ⊕ z]
candidate (⊕) xs = scanl1 (⊕) xs

17

Another Problem

Even representation :: Nat→ Maybe [Expr] is not very
“testable” for our purposes, since we can only find out which
outputs are Nothing by actually applying the function.

What we need “to shortcut” the complex precondition check is
explicit access to the definedness domain.

So, we store only the non-Nothing positions, as key-value-pairs:

type Sparse = [(Nat, [Expr])]

Previous example then corresponds to (among others):

sparse :: Sparse
sparse = [(1, [Op (Var 0) (Var 0)])

, (3, [Var 0,Op (Var 1) (Var 2)])]

Actually a technical challenge now: programmatic conversion
between [(Nat, [Expr])] and Nat→ Maybe [Expr] ?

18

Another Problem

Even representation :: Nat→ Maybe [Expr] is not very
“testable” for our purposes, since we can only find out which
outputs are Nothing by actually applying the function.

What we need “to shortcut” the complex precondition check is
explicit access to the definedness domain.

So, we store only the non-Nothing positions, as key-value-pairs:

type Sparse = [(Nat, [Expr])]

Previous example then corresponds to (among others):

sparse :: Sparse
sparse = [(1, [Op (Var 0) (Var 0)])

, (3, [Var 0,Op (Var 1) (Var 2)])]

Actually a technical challenge now: programmatic conversion
between [(Nat, [Expr])] and Nat→ Maybe [Expr] ?

18

Another Problem

Even representation :: Nat→ Maybe [Expr] is not very
“testable” for our purposes, since we can only find out which
outputs are Nothing by actually applying the function.

What we need “to shortcut” the complex precondition check is
explicit access to the definedness domain.

So, we store only the non-Nothing positions, as key-value-pairs:

type Sparse = [(Nat, [Expr])]

Previous example then corresponds to (among others):

sparse :: Sparse
sparse = [(1, [Op (Var 0) (Var 0)])

, (3, [Var 0,Op (Var 1) (Var 2)])]

Actually a technical challenge now: programmatic conversion
between [(Nat, [Expr])] and Nat→ Maybe [Expr] ?

18

Another Problem

Even representation :: Nat→ Maybe [Expr] is not very
“testable” for our purposes, since we can only find out which
outputs are Nothing by actually applying the function.

What we need “to shortcut” the complex precondition check is
explicit access to the definedness domain.

So, we store only the non-Nothing positions, as key-value-pairs:

type Sparse = [(Nat, [Expr])]

Previous example then corresponds to (among others):

sparse :: Sparse
sparse = [(1, [Op (Var 0) (Var 0)])

, (3, [Var 0,Op (Var 1) (Var 2)])]

Actually a technical challenge now: programmatic conversion
between [(Nat, [Expr])] and Nat→ Maybe [Expr] ?

18

Another Problem

Even representation :: Nat→ Maybe [Expr] is not very
“testable” for our purposes, since we can only find out which
outputs are Nothing by actually applying the function.

What we need “to shortcut” the complex precondition check is
explicit access to the definedness domain.

So, we store only the non-Nothing positions, as key-value-pairs:

type Sparse = [(Nat, [Expr])]

Previous example then corresponds to (among others):

sparse :: Sparse
sparse = [(1, [Op (Var 0) (Var 0)])

, (3, [Var 0,Op (Var 1) (Var 2)])]

Actually a technical challenge now: programmatic conversion
between [(Nat, [Expr])] and Nat→ Maybe [Expr] ?

18

Excurse: from Nat→ Maybe [Expr] to [(Nat, [Expr])]

Problem:
I A naive “sparsification”, iterating through all natural numbers

and keeping those for which the result is non-Nothing, does
not work well.

I For example, sparsify (const Nothing) would simply give
⊥ :: Sparse, from which we could not learn anything.

Solution:
I work with lazy natural numbers: data Nat = Z | S Nat
I use an appropriately lazy function for lookup in [(Nat, [Expr])]
I convert with care
I (for convenience, actually store only the “gap lengths”)

Example:

representation :: Nat→ Maybe [Expr]
representation n | n== 1 = Just [Op (Var 0) (Var 0)]

| n== 3 = Just [Var 0, . . .]
| otherwise = Nothing

now turns into:

sparse :: Sparse
sparse = [(S Z , [Op (Var 0) (Var 0)])

, (S Z , [Var 0, . . .])
, (S (S (S . . .)),⊥)] ++⊥

19

Excurse: from Nat→ Maybe [Expr] to [(Nat, [Expr])]

Problem:
I A naive “sparsification”, iterating through all natural numbers

and keeping those for which the result is non-Nothing, does
not work well.

I For example, sparsify (const Nothing) would simply give
⊥ :: Sparse, from which we could not learn anything.

Solution:
I work with lazy natural numbers: data Nat = Z | S Nat
I use an appropriately lazy function for lookup in [(Nat, [Expr])]
I convert with care
I (for convenience, actually store only the “gap lengths”)

Example:

representation :: Nat→ Maybe [Expr]
representation n | n== 1 = Just [Op (Var 0) (Var 0)]

| n== 3 = Just [Var 0, . . .]
| otherwise = Nothing

now turns into:

sparse :: Sparse
sparse = [(S Z , [Op (Var 0) (Var 0)])

, (S Z , [Var 0, . . .])
, (S (S (S . . .)),⊥)] ++⊥

19

Excurse: from Nat→ Maybe [Expr] to [(Nat, [Expr])]

Problem:
I A naive “sparsification”, iterating through all natural numbers

and keeping those for which the result is non-Nothing, does
not work well.

I For example, sparsify (const Nothing) would simply give
⊥ :: Sparse, from which we could not learn anything.

Solution:
I work with lazy natural numbers: data Nat = Z | S Nat

I use an appropriately lazy function for lookup in [(Nat, [Expr])]
I convert with care
I (for convenience, actually store only the “gap lengths”)

Example:

representation :: Nat→ Maybe [Expr]
representation n | n== 1 = Just [Op (Var 0) (Var 0)]

| n== 3 = Just [Var 0, . . .]
| otherwise = Nothing

now turns into:

sparse :: Sparse
sparse = [(S Z , [Op (Var 0) (Var 0)])

, (S Z , [Var 0, . . .])
, (S (S (S . . .)),⊥)] ++⊥

19

Excurse: from Nat→ Maybe [Expr] to [(Nat, [Expr])]

Problem:
I A naive “sparsification”, iterating through all natural numbers

and keeping those for which the result is non-Nothing, does
not work well.

I For example, sparsify (const Nothing) would simply give
⊥ :: Sparse, from which we could not learn anything.

Solution:
I work with lazy natural numbers: data Nat = Z | S Nat
I use an appropriately lazy function for lookup in [(Nat, [Expr])]

I convert with care
I (for convenience, actually store only the “gap lengths”)

Example:

representation :: Nat→ Maybe [Expr]
representation n | n== 1 = Just [Op (Var 0) (Var 0)]

| n== 3 = Just [Var 0, . . .]
| otherwise = Nothing

now turns into:

sparse :: Sparse
sparse = [(S Z , [Op (Var 0) (Var 0)])

, (S Z , [Var 0, . . .])
, (S (S (S . . .)),⊥)] ++⊥

19

Excurse: from Nat→ Maybe [Expr] to [(Nat, [Expr])]

Problem:
I A naive “sparsification”, iterating through all natural numbers

and keeping those for which the result is non-Nothing, does
not work well.

I For example, sparsify (const Nothing) would simply give
⊥ :: Sparse, from which we could not learn anything.

Solution:
I work with lazy natural numbers: data Nat = Z | S Nat
I use an appropriately lazy function for lookup in [(Nat, [Expr])]
I convert with care

I (for convenience, actually store only the “gap lengths”)

Example:

representation :: Nat→ Maybe [Expr]
representation n | n== 1 = Just [Op (Var 0) (Var 0)]

| n== 3 = Just [Var 0, . . .]
| otherwise = Nothing

now turns into:

sparse :: Sparse
sparse = [(S Z , [Op (Var 0) (Var 0)])

, (S Z , [Var 0, . . .])
, (S (S (S . . .)),⊥)] ++⊥

19

Excurse: from Nat→ Maybe [Expr] to [(Nat, [Expr])]

Problem:
I A naive “sparsification”, iterating through all natural numbers

and keeping those for which the result is non-Nothing, does
not work well.

I For example, sparsify (const Nothing) would simply give
⊥ :: Sparse, from which we could not learn anything.

Solution:
I work with lazy natural numbers: data Nat = Z | S Nat
I use an appropriately lazy function for lookup in [(Nat, [Expr])]
I convert with care
I (for convenience, actually store only the “gap lengths”)

Example:

representation :: Nat→ Maybe [Expr]
representation n | n== 1 = Just [Op (Var 0) (Var 0)]

| n== 3 = Just [Var 0, . . .]
| otherwise = Nothing

now turns into:

sparse :: Sparse
sparse = [(S Z , [Op (Var 0) (Var 0)])

, (S Z , [Var 0, . . .])
, (S (S (S . . .)),⊥)] ++⊥

19

Excurse: from Nat→ Maybe [Expr] to [(Nat, [Expr])]

Solution:
I work with lazy natural numbers: data Nat = Z | S Nat
I use an appropriately lazy function for lookup in [(Nat, [Expr])]
I convert with care
I (for convenience, actually store only the “gap lengths”)

Example:

representation :: Nat→ Maybe [Expr]
representation n | n== 1 = Just [Op (Var 0) (Var 0)]

| n== 3 = Just [Var 0, . . .]
| otherwise = Nothing

now turns into:

sparse :: Sparse
sparse = [(S Z , [Op (Var 0) (Var 0)])

, (S Z , [Var 0, . . .])
, (S (S (S . . .)),⊥)] ++⊥

19

Excurse: from Nat→ Maybe [Expr] to [(Nat, [Expr])]

Solution:
I work with lazy natural numbers: data Nat = Z | S Nat
I use an appropriately lazy function for lookup in [(Nat, [Expr])]
I convert with care
I (for convenience, actually store only the “gap lengths”)

Example:

representation :: Nat→ Maybe [Expr]
representation n | n== 1 = Just [Op (Var 0) (Var 0)]

| n== 3 = Just [Var 0, . . .]
| otherwise = Nothing

now turns into:

sparse :: Sparse
sparse = [(S Z , [Op (Var 0) (Var 0)])

, (S Z , [Var 0, . . .])
, (S (S (S . . .)),⊥)] ++⊥

19

Wrapping up the Transformation

We now have:

quickCheck $ λ(sparse :: Sparse)→
(forAll associative $ λ((⊕) :: Bool→ Bool→ Bool)→
λxs :: [Bool]→ . . .)

==>
∀τ. (forAll associative $ λ((⊕) :: τ → τ → τ)→

λxs :: [τ]→ . . .)

Now we can:

I implement the complex precondition check
(by handcoding or using SmallCheck machinery)

I generalize to other finite types

I experiment with different choices for τ

I experiment with different generators for Sparse-candidates

I experiment with QuickCheck vs. SmallCheck

20

Wrapping up the Transformation

We now have:

quickCheck $ λ(sparse :: Sparse)→
(forAll associative $ λ((⊕) :: Bool→ Bool→ Bool)→
λxs :: [Bool]→ . . .)

==>
∀τ. (forAll associative $ λ((⊕) :: τ → τ → τ)→

λxs :: [τ]→ . . .)

Now we can:

I implement the complex precondition check
(by handcoding or using SmallCheck machinery)

I generalize to other finite types

I experiment with different choices for τ

I experiment with different generators for Sparse-candidates

I experiment with QuickCheck vs. SmallCheck

20

Wrapping up the Transformation

We now have:

quickCheck $ λ(sparse :: Sparse)→
(forAll associative $ λ((⊕) :: Bool→ Bool→ Bool)→
λxs :: [Bool]→ . . .)

==>
∀τ. (forAll associative $ λ((⊕) :: τ → τ → τ)→

λxs :: [τ]→ . . .)

Now we can:

I implement the complex precondition check
(by handcoding or using SmallCheck machinery)

I generalize to other finite types

I experiment with different choices for τ

I experiment with different generators for Sparse-candidates

I experiment with QuickCheck vs. SmallCheck

20

Wrapping up the Transformation

We now have:

quickCheck $ λ(sparse :: Sparse)→
(forAll associative $ λ((⊕) :: Bool→ Bool→ Bool)→
λxs :: [Bool]→ . . .)

==>
∀τ. (forAll associative $ λ((⊕) :: τ → τ → τ)→

λxs :: [τ]→ . . .)

Now we can:

I implement the complex precondition check
(by handcoding or using SmallCheck machinery)

I generalize to other finite types

I experiment with different choices for τ

I experiment with different generators for Sparse-candidates

I experiment with QuickCheck vs. SmallCheck

20

Wrapping up the Transformation

We now have:

quickCheck $ λ(sparse :: Sparse)→
(forAll associative $ λ((⊕) :: Bool→ Bool→ Bool)→
λxs :: [Bool]→ . . .)

==>
∀τ. (forAll associative $ λ((⊕) :: τ → τ → τ)→

λxs :: [τ]→ . . .)

Now we can:

I implement the complex precondition check
(by handcoding or using SmallCheck machinery)

I generalize to other finite types

I experiment with different choices for τ

I experiment with different generators for Sparse-candidates

I experiment with QuickCheck vs. SmallCheck

20

Some Counterexamples Thus Found

candidate :: (α→ α→ α)→ [α]→ [α]
candidate (⊕) [x0] = [x0]
candidate (⊕) [x0, x1] = [x0, (((x0 ⊕ x1) ⊕ x0) ⊕ x0) ⊕ (x1 ⊕ x1)]
candidate (⊕) xs = scanl1 (⊕) xs

candidate :: (α→ α→ α)→ [α]→ [α]
candidate (⊕) [x0] = [x0]
candidate (⊕) [x0, x1] = [x0, ((x0 ⊕ x0) ⊕ x0) ⊕ x1]
candidate (⊕) xs = scanl1 (⊕) xs

candidate :: (α→ α→ α)→ [α]→ [α]
candidate (⊕) [x0, x1, x2] = [x0, (x0 ⊕ x0) ⊕ (x0 ⊕ x1)

, x0 ⊕ (x1 ⊕ x2)]
candidate (⊕) xs = scanl1 (⊕) xs

21

Some Counterexamples Thus Found

candidate :: (α→ α→ α)→ [α]→ [α]
candidate (⊕) [x0] = [x0]
candidate (⊕) [x0, x1] = [x0, (((x0 ⊕ x1) ⊕ x0) ⊕ x0) ⊕ (x1 ⊕ x1)]
candidate (⊕) xs = scanl1 (⊕) xs

candidate :: (α→ α→ α)→ [α]→ [α]
candidate (⊕) [x0] = [x0]
candidate (⊕) [x0, x1] = [x0, ((x0 ⊕ x0) ⊕ x0) ⊕ x1]
candidate (⊕) xs = scanl1 (⊕) xs

candidate :: (α→ α→ α)→ [α]→ [α]
candidate (⊕) [x0, x1, x2] = [x0, (x0 ⊕ x0) ⊕ (x0 ⊕ x1)

, x0 ⊕ (x1 ⊕ x2)]
candidate (⊕) xs = scanl1 (⊕) xs

21

Some Counterexamples Thus Found

candidate :: (α→ α→ α)→ [α]→ [α]
candidate (⊕) [x0] = [x0]
candidate (⊕) [x0, x1] = [x0, (((x0 ⊕ x1) ⊕ x0) ⊕ x0) ⊕ (x1 ⊕ x1)]
candidate (⊕) xs = scanl1 (⊕) xs

candidate :: (α→ α→ α)→ [α]→ [α]
candidate (⊕) [x0] = [x0]
candidate (⊕) [x0, x1] = [x0, ((x0 ⊕ x0) ⊕ x0) ⊕ x1]
candidate (⊕) xs = scanl1 (⊕) xs

candidate :: (α→ α→ α)→ [α]→ [α]
candidate (⊕) [x0, x1, x2] = [x0, (x0 ⊕ x0) ⊕ (x0 ⊕ x1)

, x0 ⊕ (x1 ⊕ x2)]
candidate (⊕) xs = scanl1 (⊕) xs

21

Recall: Plan of the Talk

I Start telling the story of how “0-1-2”, ⊕1, ⊕2, . . . were found
(back in 2007, never recorded, but interesting I think).

I Challenge you to suggest other approaches to discover the
required counterexamples and proof ingredients?

I Invite complaints about where the presented (deliberately
naive, exploratory) approach is too ad-hoc, or unacceptably
pulls a rabbit out of a hat.

I Provoke investigation/proposals of other algorithm classes on
which one could try to play the same or similar trick(s)?

23

References I

G.E. Blelloch.
Prefix sums and their applications.
In J.H. Reif, editor, Synthesis of Parallel Algorithms, pages
35–60. Morgan Kaufmann, 1993.

S. Böhme.
Much Ado about Two. Formal proof development.
In The Archive of Formal Proofs.
http://afp.sf.net/entries/MuchAdoAboutTwo.shtml,
2007.

N.A. Day, J. Launchbury, and J.R. Lewis.
Logical abstractions in Haskell.
In Haskell Workshop, Proceedings, 1999.

25

http://afp.sf.net/entries/MuchAdoAboutTwo.shtml

References II

D.E. Knuth.
The Art of Computer Programming, volume 3: Sorting and
Searching.
Addison-Wesley, 1973.

J.C. Reynolds.
Types, abstraction and parametric polymorphism.
In Information Processing, Proceedings, pages 513–523.
Elsevier Science Publishers B.V., 1983.

M. Sheeran.
Searching for prefix networks to fit in a context using a lazy
functional programming language.
Hardware Design and Functional Languages, 2007.

26

References III

J. Sklansky.
Conditional-sum addition logic.
IRE Transactions on Electronic Computers, EC-9(6):226–231,
1960.

J. Voigtländer.
Much ado about two: A pearl on parallel prefix computation.
In Principles of Programming Languages, Proceedings, pages
29–35. ACM Press, 2008.

P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347–359. ACM Press, 1989.

27

	Knuth's 0-1-Principle
	Parallel Prefix Computation
	A Knuth-like 0-1-2-Principle
	Discovering Counterexamples
	References
	Doing the Actual Proof

