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Semantic Bidirectionalization

|dea: Have higher-order function bff' such
that any get and bff get satisfy
GetPut, PutGet, . ...

Examples:
flatten Cu "
> “abac
lal lb’ lal lcl
update
i 1 1 LA 1 < bff flatten abXC
a''b’''x'‘c

f “Bidirectionalization for free!”
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“Status Quo”

[V., POPL'09]:
» very lightweight, easy access to bidirectionality
» proofs by free theorems [Wadler, FPCA’89]
» major problem: rejects shape-changing updates

[Matsuda et al., ICFP'07]:
» heavily depends on syntactic restraints
» allows (ad-hoc) also shape-changing updates

Here:
» synthesis of the two techniques
» inherits limitations in program coverage from both
» strictly better in terms of updatability than either
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Expectations on t’

Let o be a function which given a data structure
computes a representation of its shape.

Then we want:

L. o(get t') = o(V)

2. if (V') = o(get s), then o(t') = o(s)
Key ldea: Abstraction!

Find sget such that:
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2. if o(v') = o(get s), then o(t') = o(s) 7

From:
U(S) ] sget I
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follows:
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oty (V)



Expectations on t’

2. if o(v') = o(get s), then o(t') = o(s) 7



Expectations on t’

2. if o(v') = o(get s), then o(t') = o(s) 7

From:
O‘(S) sget < get .
1: 7] l”
O(t) sput (V') ’ sget ’

follows that if o(v') = o(get s), then o(t') = o(s).
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[M. et al.,
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Taking Stock

» Semantic Approach:

» lightweight, “as a library”
» essential role: polymorphic function types

» Syntactic Approach:

» classical program transformation
» “constant-complement” [Banc. & Sp., TODS'81]

» Combination per “Separation of Concerns”:
» separate data into shape and content
» treat shape via syntactic approach
» treat content via semantic approach
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Looking Further
» Try it out: link to implementation in the paper!

» Side effect: syntactic applicability improved
(by using additional program transformations)

» Parametrization via “bias” and default values
» Efficiency: (still) rather bad

» (More) future work: general types, type classes

14
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