Combining
Syntactic and Semantic
Bidirectionalization

J. Voigtlinder! Z. Hu? K. Matsuda® M. Wang*

1University of Bonn
>NIl Tokyo
3Tohoku University

4University of Oxford

ICFP'10

Bidirectional Transformation

source view

get R ii

Bidirectional Transformation

source

/N

get

view

update

>

Bidirectional Transformation

source

/N
QN

get

A

put

view

>

update

>

Bidirectional Transformation

source

/N
QN

view
get R i i
update
N &

Bidirectional Transformation

source view

i j get R

/N
/N

Acceptability / GetPut

Bidirectional Transformation

source view

get

<

>

=
N

Acceptability / GetPut

Bidirectional Transformation

source view
i j get R i i
update

AN VN

Consistency / PutGet

Bidirectional Transformation

source view
i j get R ij
update
A‘ put &
\/
get

Consistency / PutGet

Bidirectional Transformation

source

/N
QN

view
get R i i
update
N &

Bidirectional Transformation

source A view
(4 \
i i /gety - i i
[\ "
’ \
] \
[} \
(] 1\
(]]
(] (]
! ' update
H i
] (]
\ [}
1 [
1 [
\ [

4
e
o
<

Lenses, DSLs
[Foster et al., TOPLAS'07, ...]

Bidirectional Transformation

source view
j j get - i j
update

[N~/

Bidirectionalization

[Matsuda et al., ICFP'07]

Bidirectional Transformation

source view

A
N

Syntactic Bidirectionalization

[Matsuda et al., ICFP'07]

P

>

Bidirectional Transformation

source view

A2
N

Semantic Bidirectionalization

[V., POPL'09]

i

P

>

Semantic Bidirectionalization

|dea: Have higher-order function bff' such
that any get and bff get satisfy
GetPut, PutGet,

f “Bidirectionalization for free!”

Semantic Bidirectionalization

|dea: Have higher-order function bff' such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

abC” tall > “bC”

f “Bidirectionalization for free!”

Semantic Bidirectionalization

|dea: Have higher-order function bff' such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

abC” tall > “bC”

update

HdeH

f “Bidirectionalization for free!”

Semantic Bidirectionalization

|dea: Have higher-order function bff' such
that any get and bff get satisfy

GetPut, PutGet,

Examples:
HabC” tall > “bC”
update
“ade” < bff tail “de”

f “Bidirectionalization for free!”

Semantic Bidirectionalization

|dea: Have higher-order function bff' such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

flatten

> “abac’l

f “Bidirectionalization for free!”

Semantic Bidirectionalization

|dea: Have higher-order function bff' such
that any get and bff get satisfy
GetPut, PutGet,

Examples:

flatten

» “abac”
lal lb1 lal ‘C,
update

Ha bXC”

f “Bidirectionalization for free!”

Semantic Bidirectionalization

|dea: Have higher-order function bff' such
that any get and bff get satisfy
GetPut, PutGet,

Examples:
flatten Cu "
> “abac
lal lb’ lal lcl
update
i 1 1 LA 1 < bff flatten abXC
a''b’''x'‘c

f “Bidirectionalization for free!”

The Semantic Approach by Example

tailoflatten “ "

lbl la1 ICI lal

update

bff (tailoflatten)

The Semantic Approach by Example

lbl la1 ICI lal

? “xca”

bff (tailoflatten)

The Semantic Approach by Example

1 2 3 4
? 1_>lb1
_’2—>‘a'
‘b’ 'a’ ‘¢’ ‘a’ 3= C
4 — '3

“xca”

The Semantic Approach by Example

m tailoflatten - [2,3 4]

1 2 3 4
? 1_>lb1
_’2—>‘a'
‘b’ 'a’ ‘¢’ ‘a’ 3= C
4 — '3

“xca”

The Semantic Approach by Example

tailoflatten

> [2,3,4]

1

2 —
3 —
4 —

v N oo

2%(X1
3—'c
4 — '3’

cha”

The Semantic Approach by Example

tailoflatten

1—'b
2—1a
3—'c
4% lal

|

1—"'D
2%[)(1
3—'c
4 — '3’

2%()(1
3—'c
4 — '3’

> [2,3,4]

The Semantic Approach by Example

m tailoflatten . [2 3 4]

? 1%[b1
2—‘a
3—'c
4 — '3

|
1_>lb1
2%1X1
3—'c
%11
/4—>'a' 4 d \

2%()(1

lbl LXY IC’ lal

The Semantic Approach by Example

lbl la1 ICI lal

“xca”

‘b o'y Pff (tailoflatten)

The Semantic Approach by Example

m tailoflatten . [2 3 4]

? 1%[b1
2—‘a
3—'c
4 — '3

|
1_>lb1
2%1X1
3—'c
%11
/4—>'a' 4 d \

2%()(1

lbl LXY IC’ lal

“Status Quo”

[V., POPL'09]:
» very lightweight, easy access to bidirectionality
» proofs by free theorems [Wadler, FPCA’89]
» major problem: rejects shape-changing updates

“Status Quo”

[V., POPL'09]:
» very lightweight, easy access to bidirectionality
» proofs by free theorems [Wadler, FPCA’89]
» major problem: rejects shape-changing updates

[Matsuda et al., ICFP'07]:
» heavily depends on syntactic restraints
» allows (ad-hoc) also shape-changing updates

“Status Quo”

[V., POPL'09]:
» very lightweight, easy access to bidirectionality
» proofs by free theorems [Wadler, FPCA’89]
» major problem: rejects shape-changing updates

[Matsuda et al., ICFP'07]:
» heavily depends on syntactic restraints
» allows (ad-hoc) also shape-changing updates

Here:
» synthesis of the two techniques
» inherits limitations in program coverage from both
» strictly better in terms of updatability than either

More Shape-Flexibility

lbl LXY lC1 lal

tailoflatten

- [2,3,4]

1—
2 —
3—
4 —

v oo

|

1—
2 —
3 —
4 —

o o] X o

2%()(1
33—
4 — '3’

cha”

More Shape-Flexibility

lbl LXY lC1 lal

tailoflatten

- [2,3,4]

1—
2 —
3—
4 —

v oo

|

1—
2 —
3 —
4 —

o o] X o

2%()(1
33—
4 — '3’

HXC”

More Shape-Flexibility

lbl LXY lC1 lal

tailoflatten

- [2,3,4]

1—
2 —
3—
4 —

v oo

|

1—
2 —
3 —
4 —

o o] X o

2%()(1
3—'c

4— 7

HXC”

More Shape-Flexibility

? tailoflatten . [2,314]

1%[b1

o [
111!1111 3_>‘C'

4 _> Aal

|
1% lbl
2%‘X,
3—'c
— 2
/ 4%‘31 4 - \

2%()(1

lbl LXY lC1 lal

Expectations on t’

Let o be a function which given a data structure
computes a representation of its shape.

Then we want:
L. o(get t') = o(V)
2. if (V') = o(get s), then o(t') = o(s)

Expectations on t’

Let o be a function which given a data structure
computes a representation of its shape.

Then we want:

L. o(get t') = o(V)

2. if (V') = o(get s), then o(t') = o(s)
Key ldea: Abstraction!

Find sget such that:

“Bootstrapping”

For sget, find sput such that GetPut and PutGet
hold:

sget sget

—_—
0 ——» 0 ° °

ST R

"“sput ° ~Sput_~
sget

“Bootstrapping”

For sget, find sput such that GetPut and PutGet
hold:

sget sget

—_—
0 ——» 0 ° °

ST R

"“sput ° ~Sput_~
sget

Then, set t’ such that:

Expectations on t’

1. o(get t')=o(V') 7

Expectations on t’
1. o(get t')=o(V') 7

From:

Expectations on t’

1. o(get t')=0o(V) 7

From:

Expectations on t’

1. o(get t')=o(V') 7

Expectations on t’

1. o(get t')=o(V') 7

From:
o(s)—ESL g gt |
? (Il la
t’ ' c—— wo
7)wa(v) sget

follows: o(get t') = o(V').

Expectations on t’

2. if o(v') = o(get s), then o(t') = o(s) 7

Expectations on t’
2. if o(v') = o(get s), then o(t') = o(s) 7

From:
sget

a(s) o—=—»o

23—12

U(tl) sput U(Vl) ’ sput ’

Expectations on t’

2. if o(v') = o(get s), then o(t') = o(s) 7

From:
U(S)] sget I
U(tl) sput U(Vl) ’ sput ’
follows:
sget
o(s)

oty (V)

Expectations on t’

2. if o(v') = o(get s), then o(t') = o(s) 7

Expectations on t’

2. if o(v') = o(get s), then o(t') = o(s) 7

From:
O‘(S) sget < get .
1: 7] l”
O(t) sput (V') ’ sget ’

follows that if o(v') = o(get s), then o(t') = o(s).

More Shape-Flexibility

? tailoflatten

- [2,3,4]

1—

m 2
2o

419

‘b’
a’
C
d

|

1—

lbl
2= %
3

X
Cy

/ 4%131

2%()(1
3—'c
4— 7

lbl LXY lC1 lal

10

More Shape-Flexibility

tailoflatten

- [2,3,4]

1 23
?
‘b’ 'a’ ‘¢’ ‘a’
e

lbl LXY IC’ lal

1—
2 —
3—
4 —

v oo

|

1—
2 —
3 —
4 —

o o] X o

2%()(1
3—'c

4— 7

HXC”

10

More Shape-Flexibility

tailoflatten

- [2.3]

1 23
?
‘b’ 'a’ ‘¢’ ‘a’
e

lbl LXY IC’ lal

1—
2 —
3—
4 —

v oo

|

1—
2 —
3 —
4 —

o o] X o

2%()(7
3—'c

4— 7

HXC”

10

More Shape-Flexibility

tailoflatten

- [2.3]

1 23
?
‘b’ 'a’ ‘¢’ ‘a’
e

lbl LXY IC’ lal

1—
2 —
3—
4 —

v oo

|

1—
2 —
3 —
4 —

o o] X o

2 = '%
3—'c

HXC”

10

More Shape-Flexibility

tailoflatten

- [2.3]

1 23
?
‘b’ 'a’ ‘¢’ ‘a’
e

1—
2 —
3—
4 —

v oo

|

1—
2 —
3 —
4 —

o o] X o

2 = '%
3—'c

HXC”

10

Essential Ingredients

The crucial point is to find sget with:

11

Essential Ingredients

The crucial point is to find sget with:

—_—p O
sget

as well as sput such that:

sget sget

—_—
o —p O o o

SR S

sput Eput~
sget

11

Essential Ingredients

The crucial point is to find sget with:

get
l l syntactic
o o .
abstraction
sget ’

as well as sput such that:

sget sget

—_—
o —p O o o

SR S

sput Eput~
sget

11

Essential Ingredients

The crucial point is to find sget with:

—_—p O
sget

as well as sput such that:

sget sget

—_—
o —p O o o

SR S

sput Eput~
sget

syntactic
abstraction

[M. et al.,
ICFP'07]

11

The Benefits of Abstraction

get ::[a] = [a]
get [] =
get [x] =
get (x:y:zs) =

[]
[]

y : (get zs)

12

The Benefits of Abstraction

get : [a] = [«a]

get [] =11

get [x] =11

get (x:y:zs) =y:(get zs)
J

compl [] =G

compl [x] =Gy x

compl (x:y:zs) = Cs x (compl zs)

12

The Benefits of Abstraction

get : [a] = [«a]

get [] =11

getlx] =1]

get (x:y:zs) =y:(get zs)
U

compl [] =G

compl [x] =Cox

compl (x:y:zs) = Cs x (compl zs)
I

put (] [] =1

put [x] [] = [x]

put (x:y:zs)(y :v)="--

12

The Benefits of Abstraction

get : [a] = [«a] sget i Int — Int
get [] =[] sget 0 =0
get [x] =[] - sget 1 =0
get (x:y:zs) =y :(get zs) sget (n+2) =1+ (sget n)
J
compl [] =G
compl [x] =Cox
compl (x:y:zs) = Cs x (compl zs)
J
put [] [] =11
put [x] [] = [x]
put (x:y:zs)(y :v)="--

12

The Benefits of Abstraction

get ::[a] = [a] sget i Int — Int

get [] =] sget 0 =0

get [x] =] - sget 1 =0

get (x:y:zs) =y :(get zs) sget (n+2) =1+ (sget n)
J U

compl [] =G compl 0 =G

compl [x] =Gy x compl 1 =G

compl (x:y:2zs) = C3 x (compl zs) compl (n+2) = compl n
J

put [] [} =1l

put [x] [] =[]

put (x:y:zs)(y :v)=---

12

The Benefits of Abstraction

get : [a] = [«a] sget 1 Int — Int

get [] =] sget 0 =0

get [x] =] - sget 1 =0

get (x:y:zs) =y :(get zs) sget (n+2) =1+ (sget n)
J U

compl [] =G compl 0 =G

compl [x] =Gy x compl 1 =G

compl (x:y:2zs) = C3 x (compl zs) compl (n+2) = compl n
J J

put [] [sput 0 0 =0

put [x] [] [X] sput 1 0 =1

put(x;yjzs)(y') sput(n+2)0 =

(

<\
+
—
~—

I

sput n
12

Taking Stock

» Semantic Approach:

» lightweight, “as a library”
» essential role: polymorphic function types

13

Taking Stock

» Semantic Approach:

» lightweight, “as a library”
» essential role: polymorphic function types

» Syntactic Approach:

» classical program transformation
» “constant-complement” [Banc. & Sp., TODS'81]

13

Taking Stock

» Semantic Approach:

» lightweight, “as a library”
» essential role: polymorphic function types

» Syntactic Approach:

» classical program transformation
» “constant-complement” [Banc. & Sp., TODS'81]

» Combination per “Separation of Concerns”:
» separate data into shape and content
» treat shape via syntactic approach
» treat content via semantic approach

13

Looking Further

» Try it out: link to implementation in the paper!

14

http://www-ps.iai.uni-bonn.de/cgi-bin/b18n-combined-cgi

Looking Further
» Try it out: link to implementation in the paper!

» Side effect: syntactic applicability improved
(by using additional program transformations)

14

http://www-ps.iai.uni-bonn.de/cgi-bin/b18n-combined-cgi

Looking Further
» Try it out: link to implementation in the paper!

» Side effect: syntactic applicability improved
(by using additional program transformations)

» Parametrization via “bias” and default values

14

http://www-ps.iai.uni-bonn.de/cgi-bin/b18n-combined-cgi

Looking Further
» Try it out: link to implementation in the paper!

» Side effect: syntactic applicability improved
(by using additional program transformations)

» Parametrization via “bias” and default values

» Efficiency: (still) rather bad

14

http://www-ps.iai.uni-bonn.de/cgi-bin/b18n-combined-cgi

Looking Further
» Try it out: link to implementation in the paper!

» Side effect: syntactic applicability improved
(by using additional program transformations)

» Parametrization via “bias” and default values
» Efficiency: (still) rather bad

» (More) future work: general types, type classes

14

http://www-ps.iai.uni-bonn.de/cgi-bin/b18n-combined-cgi

References |

[F. Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems,
6(3):557-575, 1981.

@ J.N. Foster, M.B. Greenwald, J.T. Moore, B.C.
Pierce, and A. Schmitt.
Combinators for bidirectional tree
transformations: A linguistic approach to the
view-update problem.
ACM Transactions on Programming Languages
and Systems, 29(3):17, 2007.

15

References |l

@ K. Matsuda, Z. Hu, K. Nakano, M. Hamana,
and M. Takeichi.
Bidirectionalization transformation based on
automatic derivation of view complement
functions.
In International Conference on Functional
Programming, Proceedings, pages 47-58. ACM
Press, 2007.

16

References Il

J. Voigtlander.
Bidirectionalization for free!
In Principles of Programming Languages,
Proceedings, pages 165-176. ACM Press, 2009.

P. Wadler.
Theorems for free!
In Functional Programming Languages and

Computer Architecture, Proceedings, pages
347-359. ACM Press, 1989.

17

	Bidirectional Transformation
	Semantic Bidirectionalization
	Combining with Syntactic Bidirectionalization
	Conclusion
	References

