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map f [ ] = [ ]
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◮ P. Wadler.
Theorems for Free!
In Functional Programming Languages and Computer

Architecture, Proceedings. ACM Press, 1989.
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What does this have to do with Bidirectionalization?
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What does this have to do with Bidirectionalization?

Assume we are given some

get :: [α] → [α]

and would like to produce from it a reasonable

put :: [α] → [α] → [α]

with

put s (get s) = s

get (put s v) = v

...

Clearly, we need to be able to analyze get somehow.
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The resulting Bidirectionalization scheme (almost):

put :: [α] → [α] → [α]
put s v = let n = (length s) − 1

s ′ = [0..n]
g = zip s ′ s

h = zip (get s ′) v

h′ = h ++ g

in map (λi → fromJust (lookup i h′)) s ′
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put s v = let n = (length s) − 1
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g = zip s ′ s

h = zip (get s ′) v

h′ = h ++ g

in map (λi → fromJust (lookup i h′)) s ′

For the full story, see:

◮ J. Voigtländer.
Bidirectionalization for Free!
In Principles of Programming Languages, Proceedings.
ACM Press, 2009.
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What I would like to tell you more about

Technical presentation:

◮ a constant-complement perspective on my method
(rephrasing/deconstructing the POPL paper’s approach)

◮ expanding the scope of semantic bidirectionalization
by throwing in additional assumptions

◮ ideas for future work
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