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holds, with arbitrary choice for f and /,

map f (g/) = g(mapf /)

» P. Wadler.
Theorems for Free!
In Functional Programming Languages and Computer
Architecture, Proceedings. ACM Press, 1989.
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Assume we are given some
get i1 [a] — [o]
and would like to produce from it a reasonable
put :: [a] — [a] — [o]
with

put s (gets) = s
get (put sv) = v

Clearly, we need to be able to analyze get somehow.
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How about doing this analysis by applying get to some input?

Like:
[1..n] if get = tail
[n..0] if get = reverse
get [0..n] = [0..(min 4 n)] if get = take b

Using the free theorem

map f (g /) = g (mapf/)
established earlier, the insights thus gained can be transferred to
source lists other than [0..n].

Given an arbitrary list s of length n+ 1,

map (s!!) (get [0..n])
= gets
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The resulting Bidirectionalization scheme (almost):

put = [a] — [o] — [o]
put sv=Ilet n = (lengths)—1
s’ =10..n]
g =zips's
h =zip (get s') v
W =h+g
in map (A — fromJust (lookup i h')) s’



The resulting Bidirectionalization scheme (almost):

put :: [a] — [a] — [d]
put sv=Ilet n = (lengths)—1
s’ =10..n]
g =zips's
h =zip (get s') v
W =h+g
in map (A — fromJust (lookup i h')) s’

For the full story, see:
» J. Voigtlander.
Bidirectionalization for Free!

In Principles of Programming Languages, Proceedings.
ACM Press, 20009.



What | would like to tell you more about

Technical presentation:

» a constant-complement perspective on my method
(rephrasing/deconstructing the POPL paper’s approach)

» expanding the scope of semantic bidirectionalization
by throwing in additional assumptions

» ideas for future work
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