Free Theorems for Bidirectional Transformation

Janis Voigtlander

Technische Universitat Dresden

GRACE-BX'08



Free theorems: Example in Haskell

For every
g [o] — [a]



Free theorems: Example in Haskell
For every
g [a] — [a]
and the standard function
map = (o — B) — [a] — [0]

map f [] =[]
map f (a:as) = (f a): (map f as)



Free theorems: Example in Haskell

For every
g [a] — [a]
and the standard function
map = (o — B) — [a] — [0]
map f [] =[]
map f (a:as) = (f a) : (map f as)
holds, with arbitrary choice for f and /,

map f (g/) = g(mapf /)



Free theorems: Example in Haskell

For every
g [a] — [a]
and the standard function
map = (o — B) — [a] — [0]
map f (] =[]
map f (a:as) = (f a): (map f as)

holds, with arbitrary choice for f and /,

map f (g/) = g(mapf /)

» P. Wadler.
Theorems for Free!
In Functional Programming Languages and Computer
Architecture, Proceedings. ACM Press, 1989.



What does this have to do with Bidirectionalization?

Assume we are given some

get :: [a] — [q]



What does this have to do with Bidirectionalization?

Assume we are given some
get :: [a] — [q]
and would like to produce from it a reasonable

put :: [o] = [a] — [o]



What does this have to do with Bidirectionalization?

Assume we are given some
get i1 [a] — [o]
and would like to produce from it a reasonable
put :: [a] — [a] — [o]
with

put s (gets) = s
get (put sv) = v



What does this have to do with Bidirectionalization?

Assume we are given some
get i1 [a] — [o]
and would like to produce from it a reasonable
put :: [a] — [a] — [o]
with

put s (gets) = s
get (put sv) = v

Clearly, we need to be able to analyze get somehow.



What have free theorems to do with Bidirectionalization?

How about doing this analysis by applying get to some input?



What have free theorems to do with Bidirectionalization?

How about doing this analysis by applying get to some input?
Like:
[1..n] if get = tail
[n..0] if get = reverse
get [0..n] = [0..(min 4 n)] if get = take 5



What have free theorems to do with Bidirectionalization?

How about doing this analysis by applying get to some input?
Like:
[1..n] if get = tail
[n..0] if get = reverse
get [0..n] = [0..(min 4 n)] if get = take 5

Using the free theorem

map f (g /) = g (mapf/)
established earlier, the insights thus gained can be transferred to
source lists other than [0..n].



What have free theorems to do with Bidirectionalization?

How about doing this analysis by applying get to some input?
Like:
[1..n] if get = tail
[n..0] if get = reverse
get [0..n] = [0..(min 4 n)] if get = take 5

Using the free theorem

map f (g /) = g (mapf/)
established earlier, the insights thus gained can be transferred to
source lists other than [0..n].

Given an arbitrary list s of length n+ 1, set g = get, f = (s!!),
and / = [0..n], leading to:

map (s!!) (get [0..n]) = get (map (s!!) [0..n])



What have free theorems to do with Bidirectionalization?

How about doing this analysis by applying get to some input?
Like:
[1..n] if get = tail
[n..0] if get = reverse
get [0..n] = [0..(min 4 n)] if get = take 5

Using the free theorem

map f (g /) = g (mapf/)
established earlier, the insights thus gained can be transferred to
source lists other than [0..n].

Given an arbitrary list s of length n+ 1, set g = get, f = (s!!),
and / = [0..n], leading to:

map (s!!) (get [0..n]) = get (map (s!!) [0..n])
= gets



What have free theorems to do with Bidirectionalization?

How about doing this analysis by applying get to some input?

Like:
[1..n] if get = tail
[n..0] if get = reverse
get [0..n] = [0..(min 4 n)] if get = take b

Using the free theorem

map f (g /) = g (mapf/)
established earlier, the insights thus gained can be transferred to
source lists other than [0..n].

Given an arbitrary list s of length n+ 1,

map (s!!) (get [0..n])
= gets



The resulting Bidirectionalization scheme (almost):

put :: [o] — [a] — [o]

put sv=Ilet n = (lengths)—1
s’ =10..n]
g =zips's

in map (A — fromJust (lookup i h')) s’



The resulting Bidirectionalization scheme (almost):

put = [a] — [o] — [o]

put sv=Ilet n = (lengths)—1
s’ =10..n]
g =zips's

in map (A — fromJust (lookup i h')) s’



The resulting Bidirectionalization scheme (almost):

put :: [o] — [a] — [o]

put sv=Ilet n = (lengths)—1
s’ =10..n]
g =zips's

in map (A — fromJust (lookup i h')) s’



The resulting Bidirectionalization scheme (almost):

put :: [o] — [a] — [o]

put sv=Ilet n = (lengths)—1
s’ =10..n]
g =zips's

in map (A — fromJust (lookup i h')) s’



The resulting Bidirectionalization scheme (almost):

put = [o] — [o] — [o]
put sv=Ilet n = (lengths)—1
s’ =10..n]
g =zips's
h =zip (get s') v
W =h+g
in map (A — fromJust (lookup i h')) s’



The resulting Bidirectionalization scheme (almost):

put :: [o] — [a] — [o]

put sv=Ilet n = (lengths)—1
s’ =10..n]
g =zips's

in map (A — fromJust (lookup i h')) s’



The resulting Bidirectionalization scheme (almost):

put = [o] — [a] — [q]

put sv=Ilet n = (lengths)—1
s’ =10..n]
g =zips's

in map (A — fromJust (lookup /i h')) &'



The resulting Bidirectionalization scheme (almost):

put = [a] — [o] — [o]
put sv=Ilet n = (lengths)—1
s’ =10..n]
g =zips's
h =zip (get s') v
W =h+g
in map (A — fromJust (lookup i h')) s’



The resulting Bidirectionalization scheme (almost):

put :: [a] — [a] — [d]
put sv=Ilet n = (lengths)—1
s’ =10..n]
g =zips's
h =zip (get s') v
W =h+g
in map (A — fromJust (lookup i h')) s’

For the full story, see:
» J. Voigtlander.
Bidirectionalization for Free!

In Principles of Programming Languages, Proceedings.
ACM Press, 20009.



What | would like to tell you more about

Technical presentation:

» a constant-complement perspective on my method
(rephrasing/deconstructing the POPL paper’s approach)

» expanding the scope of semantic bidirectionalization
by throwing in additional assumptions

» ideas for future work



	Free theorems

