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Polymorphic Types: An Example in Haskell

A standard function:

map :: (α → β) → [α] → [β]
map f [ ] = [ ]
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4] — α, β 7→ Int, Int

map not [True,False] = [False,True] — α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False] — α, β 7→ Int,Bool

map not [1, 2, 3]  rejected at compile-time
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Another Example

takeWhile :: (α → Bool) → [α] → [α]
takeWhile p [ ] = [ ]
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = [ ]
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Another Example

takeWhile :: (α → Bool) → [α] → [α]

filter :: (α → Bool) → [α] → [α]

g :: (α → Bool) → [α] → [α]

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f ) l)

filter p (map f l) = map f (filter (p ◦ f ) l)

g p (map f l) = map f (g (p ◦ f ) l)
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◮ g with p always chooses “the same” elements from (map f l)
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◮ (g p (map f l)) is equivalent to (map f (g (p ◦ f ) l)).
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Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/∼voigt/ft:
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Automatic Generation of Free Theorems
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DFG-Project VO 1512/1-1

Free theorems
• POPL’04
• TCS’07
• I&C’09

Program trans-
formations
• ICFP’02
• FLOPS’08
• MPC’08

Applications
• POPL’08
• POPL’09

Automatentheorie
3. TOCS’07,
7. JFP’04

16. RTA’02

ICFP’07,
PEPM’09,
HCAR

•
P
EP

M
’0
8

•
FI

’0
6

Project
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◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

 Not true! Also possible:

◮ checking elements from l for being ⊥

◮ checking p for being ⊥

◮ checking outcome of p on ⊥

. . . ???
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g p (map f l) = map f (g (p ◦ f ) l)

[Johann & V., POPL’04] : in Haskell only provable if:

◮ p 6= ⊥,

◮ f strict (f ⊥ = ⊥), and

◮ f total (∀x 6= ⊥. f x 6= ⊥).

[Johann & V., I&C’09] : taking finite failures into account

[Stenger & V., TR] : taking imprecise error semantics into account
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Errors in Haskell

◮ let average l = div (sum l) (length l)
in average [ ]
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Errors in Haskell

◮ let average l = div (sum l) (length l)
in average [ ]

◮ let tail (a : as) = as

in tail [ ]

◮ if · · · then error “some string” else · · ·

◮ let loop = loop

in loop

Traditionally, all error causes subsumed under ⊥.

Better, explicit distinction. Like:

Ok v : nonerroneous

Bad “· · · ” : finitely failing

⊥ : nonterminating
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Propagation of Errors

◮ tail [1/0, 2.5]  Ok [Ok 2.5]
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Propagation of Errors

◮ tail [1/0, 2.5]  Ok [Ok 2.5]

◮ (λx → 3) (error “· · · ”)  Ok 3

◮ (error s) (· · · )  Bad s

◮ case (error s) of {· · · }  Bad s

◮ (error s1) + (error s2)  ???

Dependence on evaluation order leads to considerably less freedom
for implementors to rearrange computations, to optimise!
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Imprecise Error Semantics [Peyton Jones et al., PLDI’99]

Basic idea:

Ok v : nonerroneous

Bad {· · · } : finitely failing, nondeterministic

⊥ : nonterminating

Definedness order:

Ok Bad

⊥

Bad e2

Bad e1

e2 ⊆ e1
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Imprecise Error Semantics [Peyton Jones et al., PLDI’99]

Propagation of Errors:

◮ (error s1) + (error s2)  Bad {s1, s2}
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Imprecise Error Semantics [Peyton Jones et al., PLDI’99]

Propagation of Errors:

◮ (error s1) + (error s2)  Bad {s1, s2}

◮ 3 + (error s)  Bad {s}

◮ loop+ (error s)  ⊥

◮ (error s1) (error s2)  Bad {s1, s2}

◮ (λx → 3) (error s)  Ok 3

◮ case (error s1) of {(x , y) → error s2}  Bad {s1, s2}
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Impact on Program Equivalence

“Normally”:

takeWhile p (map f l) = map f (takeWhile (p ◦ f ) l)

where:

takeWhile :: (α → Bool) → [α] → [α]
takeWhile p [ ] = [ ]
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = [ ]

map :: (α → β) → [α] → [β]
map f [ ] = [ ]
map f (a : as) = (f a) : (map f as)
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Because:

takeWhile (null ◦ tail) (error s)  Bad {s, “empty list”}

while:

takeWhile null (map tail (error s))  Bad {s}

Thus:

takeWhile null (map tail (error s))
6=

map tail (takeWhile (null ◦ tail) (error s))

Now, imagine this in the following program context:

catchJust errorCalls (evaluate · · ·)
(λs → if s == “empty list”

then return [[42]]
else return [ ])
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g p (map f l) = map f (g (p ◦ f ) l)

[Johann & V., POPL’04] : in Haskell only provable if:

◮ p 6= ⊥,

◮ f strict (f ⊥ = ⊥), and

◮ f total (∀x 6= ⊥. f x 6= ⊥).

What are corresponding conditions “in real”?

Ok Bad

⊥
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. . . provide full formalisation

. . . enter general proof of parametricity theorem

. . . identify appropriate restrictions on the level of relations

. . . adapt relational actions

. . . complete general proof

. . . transfer restrictions to the level of functions

. . . apply to concrete functions

(. . . similarly for “asymmetric” scenarios as well)

15



. . . Application to takeWhile

For every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f ) l)

16



. . . Application to takeWhile

For every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f ) l)

provided

◮ p and f are nonerroneous,

Ok Bad

⊥

f

p

16



. . . Application to takeWhile

For every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f ) l)

provided

◮ p and f are nonerroneous,

◮ f ⊥ = ⊥,

Ok Bad

⊥

f

p

f

16



. . . Application to takeWhile

For every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f ) l)

provided

◮ p and f are nonerroneous,

◮ f ⊥ = ⊥,

◮ f acts as identity on erroneous values, and

Ok Bad

⊥

f

p

f

f

f

f

16



. . . Application to takeWhile

For every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f ) l)

provided

◮ p and f are nonerroneous,

◮ f ⊥ = ⊥,

◮ f acts as identity on erroneous values, and

◮ f maps nonerroneous values to nonerroneous values.

Ok Bad

⊥

f

p

f

f

f

f
f
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Types:
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◮ thus lead to interesting theorems about programs

◮ combine well with algebraic techniques, equational reasoning

On the programming language side:

◮ push towards full programming languages

◮ strive for more expressive type systems

On the practical side:

◮ efficiency-improving program transformations

◮ applications in specific domains

17
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