
Type-Based Reasoning and Imprecise Errors

Janis Voigtländer

Technische Universität Dresden

March 6th, 2009

Polymorphic Types: An Example in Haskell

A standard function:

map f [] = []
map f (a : as) = (f a) : (map f as)

1

Polymorphic Types: An Example in Haskell

A standard function:

map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4]

1

Polymorphic Types: An Example in Haskell

A standard function:

map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4]

map not [True,False] = [False,True]

1

Polymorphic Types: An Example in Haskell

A standard function:

map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4]

map not [True,False] = [False,True]

map even [1, 2, 3] = [False,True,False]

1

Polymorphic Types: An Example in Haskell

A standard function:

map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4]

map not [True,False] = [False,True]

map even [1, 2, 3] = [False,True,False]

map not [1, 2, 3]

1

Polymorphic Types: An Example in Haskell

A standard function:

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4]

map not [True,False] = [False,True]

map even [1, 2, 3] = [False,True,False]

map not [1, 2, 3]

1

Polymorphic Types: An Example in Haskell

A standard function:

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4] — α, β 7→ Int, Int

map not [True,False] = [False,True]

map even [1, 2, 3] = [False,True,False]

map not [1, 2, 3]

1

Polymorphic Types: An Example in Haskell

A standard function:

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4] — α, β 7→ Int, Int

map not [True,False] = [False,True] — α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False]

map not [1, 2, 3]

1

Polymorphic Types: An Example in Haskell

A standard function:

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4] — α, β 7→ Int, Int

map not [True,False] = [False,True] — α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False] — α, β 7→ Int,Bool

map not [1, 2, 3]

1

Polymorphic Types: An Example in Haskell

A standard function:

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

Some invocations:

map succ [1, 2, 3] = [2, 3, 4] — α, β 7→ Int, Int

map not [True,False] = [False,True] — α, β 7→ Bool,Bool

map even [1, 2, 3] = [False,True,False] — α, β 7→ Int,Bool

map not [1, 2, 3] rejected at compile-time

1

Another Example

takeWhile :: (α → Bool) → [α] → [α]
takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

2

Another Example

takeWhile :: (α → Bool) → [α] → [α]
takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

Provable by induction.

2

Another Example

takeWhile :: (α → Bool) → [α] → [α]
takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

Provable by induction.

Or as a “free theorem” [Wadler, FPCA’89].

2

Another Example

takeWhile :: (α → Bool) → [α] → [α]

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

Provable by induction.

Or as a “free theorem” [Wadler, FPCA’89].

2

Another Example

takeWhile :: (α → Bool) → [α] → [α]

filter :: (α → Bool) → [α] → [α]

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

filter p (map f l) = map f (filter (p ◦ f) l)

2

Another Example

takeWhile :: (α → Bool) → [α] → [α]

filter :: (α → Bool) → [α] → [α]

g :: (α → Bool) → [α] → [α]

For every choice of p, f , and l :

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

filter p (map f l) = map f (filter (p ◦ f) l)

g p (map f l) = map f (g (p ◦ f) l)

2

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

3

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

3

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

3

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

3

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

3

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

◮ Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

3

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

◮ Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l ,

3

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

◮ Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that it
outputs their images under f .

3

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

◮ Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that it
outputs their images under f .

◮ (g p (map f l)) is equivalent to (map f (g (p ◦ f) l)).

3

Why, Intuitively

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

◮ The lists (map f l) and l always have equal length.

◮ Applying p to an element of (map f l) always has the same
outcome as applying (p ◦ f) to the corresponding element of l .

◮ g with p always chooses “the same” elements from (map f l)
for output as does g with (p ◦ f) from l , except that it
outputs their images under f .

◮ (g p (map f l)) is equivalent to (map f (g (p ◦ f) l)).

◮ That is what was claimed!

3

Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/∼voigt/ft:

4

http://linux.tcs.inf.tu-dresden.de/~voigt/ft

Automatic Generation of Free Theorems

4

DFG-Project VO 1512/1-1

Free theorems
• POPL’04
• TCS’07
• I&C’09

Program trans-
formations
• ICFP’02
• FLOPS’08
• MPC’08

Applications
• POPL’08
• POPL’09

Automatentheorie
3. TOCS’07,
7. JFP’04

16. RTA’02

ICFP’07,
PEPM’09,
HCAR

•
P
EP

M
’0
8

•
FI

’0
6

Project

5

DFG-Project VO 1512/1-1

Free theorems
• POPL’04
• TCS’07
• I&C’09

Program trans-
formations
• ICFP’02
• FLOPS’08
• MPC’08

Applications
• POPL’08
• POPL’09

Automatentheorie
3. TOCS’07,
7. JFP’04

16. RTA’02

ICFP’07,
PEPM’09,
HCAR

•
P
EP

M
’0
8

•
FI

’0
6

Project

5

Where is the Problem?

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

6

Where is the Problem?

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

6

Where is the Problem?

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥

6

Where is the Problem?

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

6

Where is the Problem?

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

6

Where is the Problem?

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

 Not true! Also possible:

◮ checking elements from l for being ⊥

◮ checking p for being ⊥

◮ checking outcome of p on ⊥

6

Where is the Problem?

◮ g :: (α → Bool) → [α] → [α] must work uniformly for every
instantiation of α.

◮ The output list can only contain elements from the input list l .

 Not true! Also possible: ⊥

◮ Which, and in which order/multiplicity, can only be decided
based on l and the input predicate p.

◮ The only means for this decision are to inspect the length of l

and to check the outcome of p on its elements.

 Not true! Also possible:

◮ checking elements from l for being ⊥

◮ checking p for being ⊥

◮ checking outcome of p on ⊥

. . . ???

6

Revising Free Theorems

[Wadler, FPCA’89] : for every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f) l)

7

Revising Free Theorems

[Wadler, FPCA’89] : for every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f) l)

[Johann & V., POPL’04] : in Haskell only provable if:

◮ p 6= ⊥,

◮ f strict (f ⊥ = ⊥), and

◮ f total (∀x 6= ⊥. f x 6= ⊥).

7

Revising Free Theorems

[Wadler, FPCA’89] : for every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f) l)

[Johann & V., POPL’04] : in Haskell only provable if:

◮ p 6= ⊥,

◮ f strict (f ⊥ = ⊥), and

◮ f total (∀x 6= ⊥. f x 6= ⊥).

[Johann & V., I&C’09] : taking finite failures into account

7

Revising Free Theorems

[Wadler, FPCA’89] : for every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f) l)

[Johann & V., POPL’04] : in Haskell only provable if:

◮ p 6= ⊥,

◮ f strict (f ⊥ = ⊥), and

◮ f total (∀x 6= ⊥. f x 6= ⊥).

[Johann & V., I&C’09] : taking finite failures into account

[Stenger & V., TR] : taking imprecise error semantics into account

7

Errors in Haskell

◮ let average l = div (sum l) (length l)
in average []

8

Errors in Haskell

◮ let average l = div (sum l) (length l)
in average []

◮ let tail (a : as) = as

in tail []

8

Errors in Haskell

◮ let average l = div (sum l) (length l)
in average []

◮ let tail (a : as) = as

in tail []

◮ if · · · then error “some string” else · · ·

8

Errors in Haskell

◮ let average l = div (sum l) (length l)
in average []

◮ let tail (a : as) = as

in tail []

◮ if · · · then error “some string” else · · ·

◮ let loop = loop

in loop

8

Errors in Haskell

◮ let average l = div (sum l) (length l)
in average []

◮ let tail (a : as) = as

in tail []

◮ if · · · then error “some string” else · · ·

◮ let loop = loop

in loop

Traditionally, all error causes subsumed under ⊥.

8

Errors in Haskell

◮ let average l = div (sum l) (length l)
in average []

◮ let tail (a : as) = as

in tail []

◮ if · · · then error “some string” else · · ·

◮ let loop = loop

in loop

Traditionally, all error causes subsumed under ⊥.

Better, explicit distinction. Like:

Ok v : nonerroneous

Bad “· · · ” : finitely failing

⊥ : nonterminating

8

Propagation of Errors

◮ tail [1/0, 2.5] Ok [Ok 2.5]

9

Propagation of Errors

◮ tail [1/0, 2.5] Ok [Ok 2.5]

◮ (λx → 3) (error “· · · ”) Ok 3

9

Propagation of Errors

◮ tail [1/0, 2.5] Ok [Ok 2.5]

◮ (λx → 3) (error “· · · ”) Ok 3

◮ (error s) (· · ·) Bad s

9

Propagation of Errors

◮ tail [1/0, 2.5] Ok [Ok 2.5]

◮ (λx → 3) (error “· · · ”) Ok 3

◮ (error s) (· · ·) Bad s

◮ case (error s) of {· · · } Bad s

9

Propagation of Errors

◮ tail [1/0, 2.5] Ok [Ok 2.5]

◮ (λx → 3) (error “· · · ”) Ok 3

◮ (error s) (· · ·) Bad s

◮ case (error s) of {· · · } Bad s

◮ (error s1) + (error s2) ???

9

Propagation of Errors

◮ tail [1/0, 2.5] Ok [Ok 2.5]

◮ (λx → 3) (error “· · · ”) Ok 3

◮ (error s) (· · ·) Bad s

◮ case (error s) of {· · · } Bad s

◮ (error s1) + (error s2) ???

Dependence on evaluation order leads to considerably less freedom
for implementors to rearrange computations, to optimise!

9

Imprecise Error Semantics [Peyton Jones et al., PLDI’99]

Basic idea:

Ok v : nonerroneous

Bad {· · · } : finitely failing, nondeterministic

⊥ : nonterminating

10

Imprecise Error Semantics [Peyton Jones et al., PLDI’99]

Basic idea:

Ok v : nonerroneous

Bad {· · · } : finitely failing, nondeterministic

⊥ : nonterminating

Definedness order:

Ok Bad

⊥

10

Imprecise Error Semantics [Peyton Jones et al., PLDI’99]

Basic idea:

Ok v : nonerroneous

Bad {· · · } : finitely failing, nondeterministic

⊥ : nonterminating

Definedness order:

Ok Bad

⊥

Bad e2

Bad e1

e2 ⊆ e1

10

Imprecise Error Semantics [Peyton Jones et al., PLDI’99]

Propagation of Errors:

◮ (error s1) + (error s2) Bad {s1, s2}

11

Imprecise Error Semantics [Peyton Jones et al., PLDI’99]

Propagation of Errors:

◮ (error s1) + (error s2) Bad {s1, s2}

◮ 3 + (error s) Bad {s}

11

Imprecise Error Semantics [Peyton Jones et al., PLDI’99]

Propagation of Errors:

◮ (error s1) + (error s2) Bad {s1, s2}

◮ 3 + (error s) Bad {s}

◮ loop+ (error s) ⊥

11

Imprecise Error Semantics [Peyton Jones et al., PLDI’99]

Propagation of Errors:

◮ (error s1) + (error s2) Bad {s1, s2}

◮ 3 + (error s) Bad {s}

◮ loop+ (error s) ⊥

◮ (error s1) (error s2) Bad {s1, s2}

11

Imprecise Error Semantics [Peyton Jones et al., PLDI’99]

Propagation of Errors:

◮ (error s1) + (error s2) Bad {s1, s2}

◮ 3 + (error s) Bad {s}

◮ loop+ (error s) ⊥

◮ (error s1) (error s2) Bad {s1, s2}

◮ (λx → 3) (error s) Ok 3

11

Imprecise Error Semantics [Peyton Jones et al., PLDI’99]

Propagation of Errors:

◮ (error s1) + (error s2) Bad {s1, s2}

◮ 3 + (error s) Bad {s}

◮ loop+ (error s) ⊥

◮ (error s1) (error s2) Bad {s1, s2}

◮ (λx → 3) (error s) Ok 3

◮ case (error s1) of {(x , y) → error s2} Bad {s1, s2}

11

Impact on Program Equivalence

“Normally”:

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

where:

takeWhile :: (α → Bool) → [α] → [α]
takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

12

Impact on Program Equivalence

“Normally”:

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

where:

takeWhile :: (α → Bool) → [α] → [α]
takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

But now:

takeWhile null (map tail (error s))
6=

map tail (takeWhile (null ◦ tail) (error s))

12

Impact on Program Equivalence

“Normally”:

takeWhile p (map f l) = map f (takeWhile (p ◦ f) l)

where:

takeWhile :: (α → Bool) → [α] → [α]
takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

map :: (α → β) → [α] → [β]
map f [] = []
map f (a : as) = (f a) : (map f as)

But now:

takeWhile null (map tail (error s)) s

6=
map tail (takeWhile (null ◦ tail) (error s)) s or “empty list”

12

Impact on Program Equivalence

Because:

takeWhile (null ◦ tail) (error s) Bad {s, “empty list”}

where:

takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

tail [] = error “empty list”
tail (a : as) = as

null [] = True
null (a : as) = False

13

Impact on Program Equivalence

Because:

takeWhile (null ◦ tail) (error s) Bad {s, “empty list”}

where:

takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

tail [] = error “empty list”
tail (a : as) = as

null [] = True
null (a : as) = False

13

Impact on Program Equivalence

Because:

takeWhile (null ◦ tail) (error s) Bad {s, “empty list”}

where:

takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

tail [] = error “empty list”
tail (a : as) = as

null [] = True
null (a : as) = False

13

Impact on Program Equivalence

Because:

takeWhile (null ◦ tail) (error s) Bad {s, “empty list”}

where:

takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

tail [] = error “empty list”
tail (a : as) = as

null [] = True
null (a : as) = False

13

Impact on Program Equivalence

Because:

takeWhile (null ◦ tail) (error s) Bad {s, “empty list”}

where:

takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

tail [] = error “empty list”
tail (a : as) = as

null [] = True
null (a : as) = False

13

Impact on Program Equivalence

Because:

takeWhile (null ◦ tail) (error s) Bad {s, “empty list”}

where:

takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

tail [] = error “empty list”
tail (a : as) = as

null [] = True
null (a : as) = False

13

Impact on Program Equivalence

Because:

takeWhile (null ◦ tail) (error s) Bad {s, “empty list”}

where:

takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

tail [] = error “empty list”
tail (a : as) = as

null [] = True
null (a : as) = False

13

Impact on Program Equivalence

Because:

takeWhile (null ◦ tail) (error s) Bad {s, “empty list”}

while:

takeWhile null (map tail (error s)) Bad {s}

where:

takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

map f [] = []
map f (a : as) = (f a) : (map f as)

null [] = True
null (a : as) = False

13

Impact on Program Equivalence

Because:

takeWhile (null ◦ tail) (error s) Bad {s, “empty list”}

while:

takeWhile null (map tail (error s)) Bad {s}

where:

takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

map f [] = []
map f (a : as) = (f a) : (map f as)

null [] = True
null (a : as) = False

13

Impact on Program Equivalence

Because:

takeWhile (null ◦ tail) (error s) Bad {s, “empty list”}

while:

takeWhile null (map tail (error s)) Bad {s}

where:

takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

map f [] = []
map f (a : as) = (f a) : (map f as)

null [] = True
null (a : as) = False

13

Impact on Program Equivalence

Because:

takeWhile (null ◦ tail) (error s) Bad {s, “empty list”}

while:

takeWhile null (map tail (error s)) Bad {s}

where:

takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

map f [] = []
map f (a : as) = (f a) : (map f as)

null [] = True
null (a : as) = False

13

Impact on Program Equivalence

Because:

takeWhile (null ◦ tail) (error s) Bad {s, “empty list”}

while:

takeWhile null (map tail (error s)) Bad {s}

where:

takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

map f [] = []
map f (a : as) = (f a) : (map f as)

null [] = True
null (a : as) = False

13

Impact on Program Equivalence

Because:

takeWhile (null ◦ tail) (error s) Bad {s, “empty list”}

while:

takeWhile null (map tail (error s)) Bad {s}

where:

takeWhile p [] = []
takeWhile p (a : as) | p a = a : (takeWhile p as)

| otherwise = []

map f [] = []
map f (a : as) = (f a) : (map f as)

null [] = True
null (a : as) = False

13

Impact on Program Equivalence

Because:

takeWhile (null ◦ tail) (error s) Bad {s, “empty list”}

while:

takeWhile null (map tail (error s)) Bad {s}

Thus:

takeWhile null (map tail (error s))
6=

map tail (takeWhile (null ◦ tail) (error s))

13

Impact on Program Equivalence

Because:

takeWhile (null ◦ tail) (error s) Bad {s, “empty list”}

while:

takeWhile null (map tail (error s)) Bad {s}

Thus:

takeWhile null (map tail (error s))
6=

map tail (takeWhile (null ◦ tail) (error s))

Now, imagine this in the following program context:

catchJust errorCalls (evaluate · · ·)
(λs → if s == “empty list”

then return [[42]]
else return [])

13

How to Revise Free Theorems?

[Wadler, FPCA’89] : for every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f) l)

14

How to Revise Free Theorems?

[Wadler, FPCA’89] : for every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f) l)

[Johann & V., POPL’04] : in Haskell only provable if:

◮ p 6= ⊥,

◮ f strict (f ⊥ = ⊥), and

◮ f total (∀x 6= ⊥. f x 6= ⊥).

14

How to Revise Free Theorems?

[Wadler, FPCA’89] : for every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f) l)

[Johann & V., POPL’04] : in Haskell only provable if:

◮ p 6= ⊥,

◮ f strict (f ⊥ = ⊥), and

◮ f total (∀x 6= ⊥. f x 6= ⊥).

What are corresponding conditions “in real”?

Ok Bad

⊥
14

Sweat and Tears . . .

. . . provide full formalisation

15

Sweat and Tears . . .

. . . provide full formalisation

. . . enter general proof of parametricity theorem

15

Sweat and Tears . . .

. . . provide full formalisation

. . . enter general proof of parametricity theorem

. . . identify appropriate restrictions on the level of relations

15

Sweat and Tears . . .

. . . provide full formalisation

. . . enter general proof of parametricity theorem

. . . identify appropriate restrictions on the level of relations

. . . adapt relational actions

15

Sweat and Tears . . .

. . . provide full formalisation

. . . enter general proof of parametricity theorem

. . . identify appropriate restrictions on the level of relations

. . . adapt relational actions

. . . complete general proof

15

Sweat and Tears . . .

. . . provide full formalisation

. . . enter general proof of parametricity theorem

. . . identify appropriate restrictions on the level of relations

. . . adapt relational actions

. . . complete general proof

. . . transfer restrictions to the level of functions

15

Sweat and Tears . . .

. . . provide full formalisation

. . . enter general proof of parametricity theorem

. . . identify appropriate restrictions on the level of relations

. . . adapt relational actions

. . . complete general proof

. . . transfer restrictions to the level of functions

. . . apply to concrete functions

15

Sweat and Tears . . .

. . . provide full formalisation

. . . enter general proof of parametricity theorem

. . . identify appropriate restrictions on the level of relations

. . . adapt relational actions

. . . complete general proof

. . . transfer restrictions to the level of functions

. . . apply to concrete functions

(. . . similarly for “asymmetric” scenarios as well)

15

. . . Application to takeWhile

For every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f) l)

16

. . . Application to takeWhile

For every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f) l)

provided

◮ p and f are nonerroneous,

Ok Bad

⊥

f

p

16

. . . Application to takeWhile

For every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f) l)

provided

◮ p and f are nonerroneous,

◮ f ⊥ = ⊥,

Ok Bad

⊥

f

p

f

16

. . . Application to takeWhile

For every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f) l)

provided

◮ p and f are nonerroneous,

◮ f ⊥ = ⊥,

◮ f acts as identity on erroneous values, and

Ok Bad

⊥

f

p

f

f

f

f

16

. . . Application to takeWhile

For every g :: (α → Bool) → [α] → [α],

g p (map f l) = map f (g (p ◦ f) l)

provided

◮ p and f are nonerroneous,

◮ f ⊥ = ⊥,

◮ f acts as identity on erroneous values, and

◮ f maps nonerroneous values to nonerroneous values.

Ok Bad

⊥

f

p

f

f

f

f
f

16

Summary and Outlook

Types:

◮ constrain the behaviour of programs

17

Summary and Outlook

Types:

◮ constrain the behaviour of programs

◮ thus lead to interesting theorems about programs

17

Summary and Outlook

Types:

◮ constrain the behaviour of programs

◮ thus lead to interesting theorems about programs

◮ combine well with algebraic techniques, equational reasoning

17

Summary and Outlook

Types:

◮ constrain the behaviour of programs

◮ thus lead to interesting theorems about programs

◮ combine well with algebraic techniques, equational reasoning

On the programming language side:

◮ push towards full programming languages

17

Summary and Outlook

Types:

◮ constrain the behaviour of programs

◮ thus lead to interesting theorems about programs

◮ combine well with algebraic techniques, equational reasoning

On the programming language side:

◮ push towards full programming languages

◮ strive for more expressive type systems

17

Summary and Outlook

Types:

◮ constrain the behaviour of programs

◮ thus lead to interesting theorems about programs

◮ combine well with algebraic techniques, equational reasoning

On the programming language side:

◮ push towards full programming languages

◮ strive for more expressive type systems

On the practical side:

◮ efficiency-improving program transformations

17

Summary and Outlook

Types:

◮ constrain the behaviour of programs

◮ thus lead to interesting theorems about programs

◮ combine well with algebraic techniques, equational reasoning

On the programming language side:

◮ push towards full programming languages

◮ strive for more expressive type systems

On the practical side:

◮ efficiency-improving program transformations

◮ applications in specific domains

17

References I

P. Hudak, R.J.M. Hughes, S.L. Peyton Jones, and P. Wadler.
A history of Haskell: Being lazy with class.
In History of Programming Languages, Proceedings, pages
12-1–12-55. ACM Press, 2007.

P. Johann and J. Voigtländer.
Free theorems in the presence of seq.
In Principles of Programming Languages, Proceedings, pages
99–110. ACM Press, 2004.

P. Johann and J. Voigtländer.
A family of syntactic logical relations for the semantics of
Haskell-like languages.
Information and Computation, 2009.

18

References II

S.L. Peyton Jones, A. Reid, C.A.R. Hoare, S. Marlow, and F.
Henderson.
A semantics for imprecise exceptions.
In Programming Language Design and Implementation,

Proceedings, pages 25–36. ACM Press, 1999.

F. Stenger and J. Voigtländer.
Parametricity for Haskell with imprecise error semantics.
Technical Report TUD-FI08-08, Technische Universität
Dresden, 2008.

P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer

Architecture, Proceedings, pages 347–359. ACM Press, 1989.

19

	Free Theorems
	Imprecise Error Semantics
	Impact on Program Equivalence
	Relational Parametricity and Imprecise Error Semantics
	Conclusion
	References

