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Why map f (get /) = get (map f /), Intuitively

>

get 11 [&] — [a] must work uniformly for every instantiation
of a.

» The output list can only contain elements from the input list /.

» Which, and in which order/multiplicity, can only be decided

based on /.

» The only means for this decision is to inspect the length of /.

» The lists (map f /) and / always have equal length.

get always chooses “the same” elements from (map f /) for
output as it does from /, except that in the former case it
outputs their images under f.

> (get (map f /1)) is equivalent to (map f (get /)).

» That is what was claimed!
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Another Example

takeWhile :: (& — Bool) — [a] — [a]
filter:: (a — Bool) — [a] — [q]

g (a0 — Bool) = [a] — [q]

For arbitrary p, f, and /:
takeWhile p (map f /) = map f (takeWhile (pof) /)
filter p (map f /) = map f (filter (pof) /)

gp(map fl) = mapf (g(pof)l)
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Automatic Generation of Free Theorems

At http://linux.tcs.inf.tu-dresden.de/~voigt/ft:

This tool allows to generate free theorems for sublanguages of Haskell as described here.

The source code of the underlying library and a shell-based application using it is available
here and here.

Please enter a (polymorphic) type, e.g. "(a -> Bool) -> [a] -> [a]" or simply "filter":

h :: (a -> Bool) -> [a] -> [a]

Please choose a sublanguage of Haskell:

® no bottoms (hence no general recursion and no selective strictness)

® general recursion but no selective strictness

® general recursion and selective strictness

Please choose a theorem style (without effect in the sublanguage with no bottoms):
® equational

®inequational

Generate



http://linux.tcs.inf.tu-dresden.de/~voigt/ft

Automatic Generation of Free Theorems

The theorem generated for functions of the type

‘g :: forall a . (a -> Bool) -> [a] -> [a]

in the sublanguage of Haskell with no bottoms is:

forall t1,t2 in TYPES, R in REL(tl,t2).
forall p :: tl -> Bool.
forall q :: t2 -> Bool.

(forall (x, y) inR. p x = qy)
==> (forall (z, v) in lift{[]}(R).
(g pz, ggqv)in Lift{[]}(R))

The structural lifting occurring therein is defined as follows:

XS, y 1 ys) |
((x, y) in R) & ((xs, ys) in Wft{[1}(R))}

Reducing all permissible relation variables to functions yields:

forall t1,t2 in TYPES, f :: tl -> t2.
forall p :: tl -> Bool.
forall q :: t2 -> Bool.
(forall x :: tl. p x =g (f x))
==> (forall 'y :: [tl]. map f (g py) =g q (map fy))

Export as PDF Show type instantiations | Enter a new type Help page




Formal Background: Parametric Polymorphism

Question: What g have type Va. (a — Bool) — [a] — [¢] ?



Formal Background: Parametric Polymorphism

Question: What g have type Va. (o« — Bool) — [a] — [a] 7
Approach: Give denotations of types as sets. (A bit naive ...)



Formal Background: Parametric Polymorphism

Question: What g have type Va. (o« — Bool) — [a] — [a] 7
Approach: Give denotations of types as sets. (A bit naive ...)

[Bool] = {True, False}
[Int] = {..,-2,-1,0,1,2,...}



Formal Background: Parametric Polymorphism

Question: What g have type Va. (o« — Bool) — [a] — [a] 7
Approach: Give denotations of types as sets. (A bit naive ...)

[Bool] = {True, False}

[Int] {..,-2,-1,0,1,2,...}
[(71,72)] = [n] x [7]

(gl = {[x1,...,x] | n>0,x; € [7]}



Formal Background: Parametric Polymorphism

Question: What g have type Va. (o« — Bool) — [a] — [a] 7
Approach: Give denotations of types as sets. (A bit naive ...)

[Bool] = {True, False}

[Int] = {..,-2,-1,0,1,2,...}
[(71,72)] = [n] x [7]

(gl = {[x1,...,x] | n>0,x; € [7]}

{f:[n] = [0}

[r1 — ]



Formal Background: Parametric Polymorphism

Question: What g have type Va. (o« — Bool) — [a] — [a] 7
Approach: Give denotations of types as sets. (A bit naive ...)

[Bool] = {True, False}

[Int] = {..,-2,-1,0,1,2,...}
[(71,72)] = [n] x [7]

%[T]]] : = {[x1,...,x] | n>0,x; € [7]}

{f:[n] = [rd}
[Va.7] ?



Formal Background: Parametric Polymorphism

Question: What g have type Va. (o« — Bool) — [a] — [a] 7
Approach: Give denotations of types as sets. (A bit naive ...)

[Bool] = {True, False}

[Int] = {..,-2,-1,0,1,2,...}
[(71,72)] = [n] x []

II-11 = {[x1,...,xa] | n>0,x €[]}
[rn — ] = {f:[n] — [=]}

[Va.] =7

» g € [Va.7] would have to be a whole “collection” of values:
for every type 7/, an instance with type 7[7’/a].



Formal Background: Parametric Polymorphism

Question: What g have type Va. (o« — Bool) — [a] — [a] 7
Approach: Give denotations of types as sets. (A bit naive ...)

[Bool] = {True, False}

[Int] = {..,-2,-1,0,1,2,...}
[(71,72)] = [n] x []

II-11 = {[x1,...,xa] | n>0,x €[]}
[rn — ] = {f:[n] — [=]}

[Va.] =7

» g € [Va.7] would have to be a whole “collection” of values:
for every type 7/, an instance with type 7[7’/a].

> [Var] ={g | V7" g € [7[7'/ol]} 7



Formal Background: Parametric Polymorphism

Question: What g have type Va. (o« — Bool) — [a] — [a] 7
Approach: Give denotations of types as sets. (A bit naive ...)

[Bool] = {True, False}

[Int] = {..,-2,-1,0,1,2,...}
[(71,72)] = [n] x []

II-11 = {[x1,...,xa] | n>0,x €[]}
[rn — ] = {f:[n] — [=]}

[Va.] =7

» g € [Va.7] would have to be a whole “collection” of values:
for every type 7/, an instance with type 7[7’/a].

> [Var] ={g | V7. g~ €[r[7'/a]]} ?
» But this includes “ad-hoc polymorphic” functions!
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Unwanted Ad-Hoc Polymorphism: Example

» With the proposed definition,
[Va. (o, ) — o] ={g | V7. g- : [7] x [7] — [7]}-
» But this also allows a g with

&Bool (x,y) = not x
8int (va) = y+17

which is not possible in Haskell at type Va. (o, o) — «.

» To prevent this, we have to compare

8Bool : [Bool] x [Bool] — [Bool] and
gnt : [Int] x [Int] — [Int],

and ensure that they “behave identically”.
But how?
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Key ldea [Reynolds 1983]

Use arbitrary relations to tie instances together!
In the example (g :: Va. (o, @) — «):
» Choose a relation R C [Bool] x [Int].
» Call (x1,x2) € [Bool] x [Bool] and (y1,y2) € [Int] x [Int]
related if (x1,y1) € R and (x2,y2) € R.
» Call f; : [Bool] x [Bool] — [Bool], f : [Int] x [Int] — [Int]
related if related inputs lead to related outputs.

» Then ggool and gyt with

8Bool (Xa)/) = not x
gint (x,y) = y+1

are not related for choice of, e.g., R = {(True, 1)}.

Reynolds: g € [Va.7] iff for every 71,7 and R C [1] x [2],
gr, is related to g, by the “propagation” of R
along 7.
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Polymorphic Lambda Calculus
[Girard 1972, Reynolds 1974]

Types: T:=a | T — 7 | Vo
Terms: t:=x | Ax:7t|tt|Nat|tT
Mx:7hkx:7 [x]6.» = o(x)

Mx:mmbEt:m
N (Ax:m.t) i — 1

|[)\X : Tl.t]]gp a = |It]]0,a[x»—>a]

FrHt:m —m lu:m

t o = |(tlo.s o
FE(tu):m [t ulo, [tl6.0 [ule,
alFt:T
’ /\ t O'S e t s o
[ (Ao.t) : Yot [Ae-t]o, [tl6jors),
-t:Va.r

FF(t7) i jal] Lt 7o = [thoe 7o
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Parametricity Theorem [Reynolds 1983, Wadler 1989]

Given 7 and environments 61, 62, p with p(a) C 61(a) X 62(«),
define A, , C [7]e, % [7]es, as follows:

Aap = p(a)

A71—>7'2,p = {(fla f2) | v(31732) € ATl,p‘ (fl a1, f2 32) € ATg,p}
Dvarp, = {(81,8) | YR C S1 x 5. (g1 51,8 S2) € Ar pla—r]}

Then, for every closed term t of closed type 7:

([tlo.0, [tlo0) € Arp-

10



Proof Sketch

Prove the following more general statement:

[ t:7 implies ([to, 00, [t]6s,00) € Drp
provided (o1(x),02(x)) € Ay, for every x : 7/ in T

by induction on the structure of typing derivations.
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([Ax = m1-t]oy,000 [AX 2 T1-t]05.00) € Driarap
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Adding Datatypes

Types: 7:= --- | Bool | [7]
Terms: t:= --- | True | False | []; | t:t| case t of {---}
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Adding Datatypes

Types: 7:= --- | Bool | [7]
Terms: t:= --- | True | False | []; | t:t| case t of {---}
I+ True: Bool , Tk False:Bool , TH[];:|[7]

Fr=t:r Mew: 7]
FE(t:u):[7]

[ t:Bool Fu:T vt
[+ (case t of {True — u;False — v}): 7

M=t [r] Mru:r Coxy 7 x:[f]Fv:T
M- (case tof {[] = u;(x1:x)—v}):T

With the straightforward extension of the semantics and with

Aool,p, = {(True, True), (False, False)}
Ay = {(x,--xal, e, - ynl) [ n>0,(x, 1) € Ayt

the parametricity theorem still holds.
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Now Formal Counterpart to Intuitive Reasoning

Given g of type Va. (v — Bool) — ([a] — [a]),
by the parametricity theorem:

(g’ g) € Ay, (a—Bool)—([a]—[a]),0
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by definition of A
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Now Formal Counterpart to Intuitive Reasoning

Given g of type Va. (v — Bool) — ([a] — [a]),
by the parametricity theorem:

VR € Rel, (alu 32) € Ao¢—>Boo|,[ou—>R]7 (l17 /2) € A[a],[aHR]'
(g a1 h,g a2 h) € Apg) [a—R]
= V(a1, 32) € Aq—_Bool,jaf]s (11, k) € (map ).
(g a1 h,g ax b) € (map f)
by instantiating R = f and realising that Ay [af] = map f

for every function f
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Given g of type Va. (v — Bool) — ([a] — [a]),
by the parametricity theorem:

V(a1,a2) € Aq—Bool [af], (115 ) € (map f).
(g a1 h,g a2 h) € (map 1)

= V(h,k) € (map ). (g (pof) h,g p k) € (map f)
by instantiating (a1,a2) = (po f, p) € Ay_.Bool,jarsf]

for every function f and predicate p.
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Now Formal Counterpart to Intuitive Reasoning

Given g of type Va. (v — Bool) — ([a] — [a]),
by the parametricity theorem:

V(h, k) € (map f). (g (pof) h,g p k) € (map f)
< Vh.map f (g(pof)h)=gp (map f h)
by inlining

for every function f and predicate p.
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Now Formal Counterpart to Intuitive Reasoning

Given g of type Va. (v — Bool) — ([a] — [a]),
by the parametricity theorem:

Vh.map f (g (pof) h) =g p (map f h)
for every function f and predicate p.

That is what was claimed!
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