Lightweight Program Inversion

Janis Voigtländer

University of Bonn

Dutch HUG Day 2010

Want (given fun, find fun⁻¹ such that):

• for every
$$x$$
, $fun^{-1} (fun x) = x$ (1)

Want (given fun, find fun⁻¹ such that):

• for every
$$x$$
, $fun^{-1} (fun x) = x$ (1)

► for every
$$y$$
, $fun(fun^{-1}y) = y$ (2)

Want (given fun, find fun⁻¹ such that):

• for every
$$x$$
, $fun^{-1} (fun x) = x$ (1)

► for every
$$y$$
, $fun(fun^{-1}y) = y$ (2)

Problems:

▶ (1) not possible if fun is not injective

Want (given fun, find fun⁻¹ such that):

- for every x, $fun^{-1} (fun x) = x$ (1)
- ► for every y, $fun(fun^{-1}y) = y$ (2)

Problems:

- ▶ (1) not possible if fun is not injective
- ▶ (2) not possible if fun is not surjective

Ĺ

Want (given fun, find fun⁻¹ such that):

• for every
$$x$$
, $fun^{-1} (fun x) = x$ (1)

► for every
$$y$$
, $fun(fun^{-1}y) = y$ (2)

Problems:

- ▶ (1) not possible if fun is not injective
- ▶ (2) not possible if fun is not surjective
- even with appropriate side conditions,

Ĺ

Want (given fun, find fun⁻¹ such that):

• for every
$$x$$
, $fun^{-1} (fun x) = x$ (1)

► for every
$$y$$
, $fun(fun^{-1}y) = y$ (2)

Problems:

- ▶ (1) not possible if fun is not injective
- ▶ (2) not possible if fun is not surjective
- even with appropriate side conditions, and/or requiring only one of (1) and (2),

Want (given fun, find fun⁻¹ such that):

• for every
$$x$$
, $fun^{-1} (fun x) = x$ (1)

• for every
$$y$$
, $\operatorname{fun}(\operatorname{fun}^{-1}y) = y$ (2)

Problems:

- ▶ (1) not possible if fun is not injective
- ▶ (2) not possible if fun is not surjective
- even with appropriate side conditions, and/or requiring only one of (1) and (2), in general fun⁻¹ not effectively computable from fun

Making the problem simpler:

▶ restrict to a particular type: $fun :: [a] \rightarrow [a]$

- ▶ restrict to a particular type: $fun :: [a] \rightarrow [a]$
- require only (2): $fun(fun^{-1} ys) = ys$

- ▶ restrict to a particular type: $fun :: [a] \rightarrow [a]$
- require only (2): $fun(fun^{-1} ys) = ys$
- ▶ allow fun⁻¹ to be partial,

- ▶ restrict to a particular type: $fun :: [a] \rightarrow [a]$
- require only (2): $fun(fun^{-1} ys) = ys$
- ▶ allow fun⁻¹ to be partial, and demand (2) only for ys for which fun⁻¹ is defined,

- ▶ restrict to a particular type: $fun :: [a] \rightarrow [a]$
- require only (2): $fun(fun^{-1} ys) = ys$
- ▶ allow fun⁻¹ to be partial, and demand (2) only for ys for which fun⁻¹ is defined, but demand fun⁻¹ to be defined for all images of fun

Making the problem simpler:

- ▶ restrict to a particular type: $fun :: [a] \rightarrow [a]$
- require only (2): $fun(fun^{-1} ys) = ys$
- ▶ allow fun⁻¹ to be partial, and demand (2) only for ys for which fun⁻¹ is defined, but demand fun⁻¹ to be defined for all images of fun

...and simultaneously more complicated:

prevent any inspection of the definition of fun!

Making the problem simpler:

- ▶ restrict to a particular type: $fun :: [a] \rightarrow [a]$
- require only (2): $fun(fun^{-1} ys) = ys$
- ▶ allow fun⁻¹ to be partial, and demand (2) only for ys for which fun⁻¹ is defined, but demand fun⁻¹ to be defined for all images of fun

...and simultaneously more complicated:

prevent any inspection of the definition of fun!

Of course, some access to fun must be possible:

can ask for fun's outputs for specific inputs

Making the problem simpler:

- ▶ restrict to a particular type: $fun :: [a] \rightarrow [a]$
- require only (2): $fun(fun^{-1} ys) = ys$
- ▶ allow fun⁻¹ to be partial, and demand (2) only for ys for which fun⁻¹ is defined, but demand fun⁻¹ to be defined for all images of fun

... and simultaneously more complicated:

prevent any inspection of the definition of fun!

Of course, some access to fun must be possible:

- can ask for fun's outputs for specific inputs
- anytime, dynamically

Rules:

▶ Alice implements a function $fun :: [a] \rightarrow [a]$

Rules:

- ▶ Alice implements a function $fun :: [a] \rightarrow [a]$
- ▶ Bob has to try to implement a function fun^{-1} :: $[a] \rightarrow [a]$

Rules:

- ▶ Alice implements a function $fun :: [a] \rightarrow [a]$
- ▶ Bob has to try to implement a function fun^{-1} :: [a] \rightarrow [a]
 - can call function fun on specific inputs

Rules:

- ▶ Alice implements a function $fun :: [a] \rightarrow [a]$
- ▶ Bob has to try to implement a function fun^{-1} :: $[a] \rightarrow [a]$
 - can call function fun on specific inputs
 - ► can even use it inside the definition of fun⁻¹, "linking" against it

Rules:

- ▶ Alice implements a function $fun :: [a] \rightarrow [a]$
- ▶ Bob has to try to implement a function fun^{-1} :: $[a] \rightarrow [a]$
 - can call function fun on specific inputs
 - can even use it inside the definition of fun⁻¹, "linking" against it
 - but no dirty tricks, disassembling, . . .

Rules:

- ▶ Alice implements a function $fun :: [a] \rightarrow [a]$
- ▶ Bob has to try to implement a function fun^{-1} :: $[a] \rightarrow [a]$
 - can call function fun on specific inputs
 - can even use it inside the definition of fun⁻¹, "linking" against it
 - but no dirty tricks, disassembling, . . .
 - ▶ has to guarantee that for every xs, $fun^{-1} (fun xs)$ is defined,

Rules:

- ▶ Alice implements a function $fun :: [a] \rightarrow [a]$
- ▶ Bob has to try to implement a function fun^{-1} :: $[a] \rightarrow [a]$
 - can call function fun on specific inputs
 - ► can even use it inside the definition of fun⁻¹, "linking" against it
 - but no dirty tricks, disassembling, . . .
 - has to guarantee that for every xs, fun^{-1} (fun xs) is defined, and that whenever fun^{-1} ys is defined, fun (fun^{-1} ys) = ys

Rules:

- ▶ Alice implements a function $fun :: [a] \rightarrow [a]$
- ▶ Bob has to try to implement a function fun^{-1} :: $[a] \rightarrow [a]$
 - can call function fun on specific inputs
 - ► can even use it inside the definition of fun⁻¹, "linking" against it
 - but no dirty tricks, disassembling, . . .
 - has to guarantee that for every xs, fun⁻¹ (fun xs) is defined, and that whenever fun⁻¹ ys is defined, fun (fun⁻¹ ys) = ys

Who will win?

Rules:

- ▶ Alice implements a function $fun :: [a] \rightarrow [a]$
- ▶ Bob has to try to implement a function fun^{-1} :: $[a] \rightarrow [a]$
 - can call function fun on specific inputs
 - can even use it inside the definition of fun⁻¹, "linking" against it
 - but no dirty tricks, disassembling, . . .
 - has to guarantee that for every xs, fun⁻¹ (fun xs) is defined, and that whenever fun⁻¹ ys is defined, fun (fun⁻¹ ys) = ys

Who will win?

Observation: If Bob has a winning strategy, he must be able to do without asking Alice for specific inputs up front, instead only provide a single definition of fun⁻¹ that works for all fun.

A possible approach for Bob:

► He is only obliged to define fun⁻¹ for images of fun.

A possible approach for Bob:

- ▶ He is only obliged to define fun⁻¹ for images of fun.
- ▶ Given a ys, he could try to find any xs with fun xs = ys.

A possible approach for Bob:

- ► He is only obliged to define fun⁻¹ for images of fun.
- Given a ys, he could try to find any xs with fun xs = ys.
- ▶ It would be a good start if at least the length of xs could be guessed somehow.

A possible approach for Bob:

- ► He is only obliged to define fun⁻¹ for images of fun.
- Given a ys, he could try to find any xs with fun xs = ys.
- ▶ It would be a good start if at least the length of xs could be guessed somehow. So let's assume there is some function

lengthInv ::
$$[a] \rightarrow Int$$

such that for every ys in the image of fun, lengthInv ys gives an n such that there is an xs of length n with fun xs = ys.

A possible approach for Bob:

- ▶ He is only obliged to define fun⁻¹ for images of fun.
- Given a ys, he could try to find any xs with fun xs = ys.
- ▶ It would be a good start if at least the length of xs could be guessed somehow. So let's assume there is some function

$$lengthInv :: [a] \rightarrow Int$$

such that for every ys in the image of fun, lengthInv ys gives an n such that there is an xs of length n with fun xs = ys.

▶ Then, an appropriate *xs* could be identified via:

```
\begin{array}{l} \mathbf{fun}^{-1} :: [a] \to [a] \\ \mathbf{fun}^{-1} \ ys = \mathbf{let} \ n = \mathbf{lengthInv} \ ys \\ t = [1 \dots n] \\ h = \mathbf{zip} \ (\mathbf{fun} \ t) \ ys \\ \mathbf{in} \ \mathbf{map} \ (\mathbf{fromJust} \circ \mathbf{flip} \ \mathbf{lookup} \ h) \ t \end{array}
```

How to implement lengthInv:

▶ If Bob had a function

checkLength :: Int
$$\rightarrow$$
 [a] \rightarrow Bool

such that checkLength n ys checks whether there is an xs of length n with fun xs = ys, then he could write:

```
lengthInv :: [a] \rightarrow Int lengthInv ys = head [n | n \leftarrow [0..], checkLength n ys]
```

How to implement lengthInv:

▶ If Bob had a function

checkLength :: Int
$$\rightarrow$$
 [a] \rightarrow Bool

such that checkLength n ys checks whether there is an xs of length n with fun xs = ys, then he could write:

```
\begin{array}{l} \texttt{lengthInv} :: [a] \to \texttt{Int} \\ \texttt{lengthInv} \ \textit{ys} = \texttt{head} \ [\textit{n} \mid \textit{n} \leftarrow [0\mathinner{\ldotp\ldotp}], \texttt{checkLength} \ \textit{n} \ \textit{ys}] \end{array}
```

▶ It would be tempting to implement checkLength as follows:

```
checkLength :: Int \rightarrow [a] \rightarrow Bool checkLength n ys = length (fun [1..n]) == length ys
```

How to implement lengthInv:

▶ If Bob had a function

checkLength :: Int
$$\rightarrow$$
 [a] \rightarrow Bool

such that checkLength n ys checks whether there is an xs of length n with fun xs = ys, then he could write:

```
\begin{array}{l} \texttt{lengthInv} :: [a] \to \texttt{Int} \\ \texttt{lengthInv} \ \textit{ys} = \texttt{head} \ [\textit{n} \mid \textit{n} \leftarrow [0\mathinner{\ldotp\ldotp}], \texttt{checkLength} \ \textit{n} \ \textit{ys}] \end{array}
```

▶ It would be tempting to implement checkLength as follows:

checkLength :: Int
$$\rightarrow$$
 [a] \rightarrow Bool checkLength n ys = length (fun [1..n]) == length ys

But that would be wrong!

How to implement lengthInv:

▶ If Bob had a function

checkLength :: Int
$$\rightarrow$$
 [a] \rightarrow Bool

such that checkLength n ys checks whether there is an xs of length n with fun xs = ys, then he could write:

```
\begin{array}{l} \texttt{lengthInv} :: [a] \to \texttt{Int} \\ \texttt{lengthInv} \ \textit{ys} = \texttt{head} \ [\textit{n} \mid \textit{n} \leftarrow [0\mathinner{\ldotp\ldotp}], \texttt{checkLength} \ \textit{n} \ \textit{ys}] \end{array}
```

▶ It would be tempting to implement checkLength as follows:

checkLength :: Int
$$\rightarrow$$
 [a] \rightarrow Bool checkLength n ys = length (fun [1..n]) == length ys

▶ But that would be wrong! Why?

Let

$$fun :: [a] \rightarrow [a]
fun xs = xs + xs$$

Let

$$fun :: [a] \rightarrow [a]$$

$$fun xs = xs + xs$$

Then, with the current definitions of checkLength, lengthInv, and fun⁻¹:

```
fun^{-1} "abcdef" = "abc"
```

Let

$$fun :: [a] \rightarrow [a]$$
$$fun xs = xs + xs$$

Then, with the current definitions of checkLength, lengthInv, and fun⁻¹:

but:

Let

$$fun :: [a] \rightarrow [a]$$
$$fun xs = xs + xs$$

Then, with the current definitions of checkLength, lengthInv, and fun⁻¹:

$$fun^{-1}$$
 "abcdef" = "abc"

but:

which violates the requirement that whenever fun^{-1} ys is defined, $fun(fun^{-1} ys) = ys$.

Let

$$fun :: [a] \rightarrow [a]$$
$$fun xs = xs + xs$$

Then, with the current definitions of checkLength, lengthInv, and fun⁻¹:

$$fun^{-1}$$
 "abcdef" = "abc"

but:

which violates the requirement that whenever $fun^{-1} ys$ is defined, $fun(fun^{-1} ys) = ys$.

Intuition: In checkLength, should check that not only has $\mathbf{fun}[1..n]$ the same length as ys, but also if two elements at positions i and j in $\mathbf{fun}[1..n]$ are equal, then for the corresponding positions in ys, $y_i = y_j$.

▶ Need to assume that elements in *ys* can be compared. Then:

```
\begin{array}{l} \textbf{checkLength} :: \mathsf{Eq} \ a \Rightarrow \mathsf{Int} \to [a] \to \mathsf{Bool} \\ \textbf{checkLength} \ n \ ys = \\ \textbf{let} \ t' = \mathsf{fun} \ [1 \mathinner{\ldotp\ldotp} n] \\ \textbf{in} \ \ \mathsf{length} \ t' == \mathsf{length} \ ys \land \\ \texttt{and} \ [(i == j) \leqslant (y == z) \mid \mathsf{let} \ zs = \mathsf{zip} \ t' \ ys, \\ (i,y) \leftarrow zs, (j,z) \leftarrow zs] \end{array}
```

▶ Need to assume that elements in *ys* can be compared. Then:

```
\begin{array}{l} \textbf{checkLength} :: \mathsf{Eq} \ a \Rightarrow \mathsf{Int} \to [a] \to \mathsf{Bool} \\ \textbf{checkLength} \ n \ ys = \\ & \textbf{let} \ t' = \mathsf{fun} \ [1 \mathinner{\ldotp\ldotp} n] \\ & \textbf{in} \ \ \mathsf{length} \ t' == \mathsf{length} \ ys \land \\ & \text{and} \ [(i == j) \leqslant (y == z) \mid \mathsf{let} \ zs = \mathsf{zip} \ t' \ ys, \\ & (i,y) \leftarrow zs, (j,z) \leftarrow zs] \end{array}
```

▶ lengthInv :: Eq $a \Rightarrow [a] \rightarrow \mathsf{Int}$, fun^{-1} :: Eq $a \Rightarrow [a] \rightarrow [a]$

▶ Need to assume that elements in *ys* can be compared. Then:

```
\begin{array}{l} \textbf{checkLength} :: \mathsf{Eq} \ a \Rightarrow \mathsf{Int} \to [a] \to \mathsf{Bool} \\ \textbf{checkLength} \ n \ ys = \\ & \textbf{let} \ t' = \mathsf{fun} \ [1 \dots n] \\ & \textbf{in} \ \ \mathsf{length} \ t' == \mathsf{length} \ ys \land \\ & \text{and} \ [(i == j) \leqslant (y == z) \mid \mathsf{let} \ zs = \mathsf{zip} \ t' \ ys, \\ & (i,y) \leftarrow zs, (j,z) \leftarrow zs] \end{array}
```

- ▶ lengthInv :: Eq $a \Rightarrow [a] \rightarrow \text{Int, } \text{fun}^{-1} :: \text{Eq } a \Rightarrow [a] \rightarrow [a]$
- Instead of fun (fun⁻¹ ys) = ys, get only fun (fun⁻¹ ys) == ys (whenever fun⁻¹ ys is defined).

▶ Need to assume that elements in *ys* can be compared. Then:

```
\begin{array}{l} \textbf{checkLength} :: \mathsf{Eq} \ a \Rightarrow \mathsf{Int} \to [a] \to \mathsf{Bool} \\ \textbf{checkLength} \ n \ ys = \\ & \textbf{let} \ t' = \mathsf{fun} \ [1 \dots n] \\ & \textbf{in} \ \ \mathsf{length} \ t' == \mathsf{length} \ ys \land \\ & \text{and} \ [(i == j) \leqslant (y == z) \mid \mathsf{let} \ zs = \mathsf{zip} \ t' \ ys, \\ & (i,y) \leftarrow zs, (j,z) \leftarrow zs] \end{array}
```

- ▶ lengthInv :: Eq $a \Rightarrow [a] \rightarrow \text{Int, } \text{fun}^{-1} :: \text{Eq } a \Rightarrow [a] \rightarrow [a]$
- Instead of fun (fun⁻¹ ys) = ys, get only fun (fun⁻¹ ys) == ys (whenever fun⁻¹ ys is defined).
- Need to assume that instances of Eq used are reflexive, transitive, and symmetric.

► Let fun = reverse.

Then, fun⁻¹ "abcdef" = "fedcba".

- ▶ Let fun = reverse.
 Then, fun⁻¹ "abcdef" = "fedcba".
- ▶ Let fun = take 5. Then, fun^{-1} "abcde" = "abcde" and fun^{-1} "abcdef" = \bot .

- ▶ Let fun = reverse.
 Then, fun⁻¹ "abcdef" = "fedcba".
- ▶ Let fun = take 5. Then, fun^{-1} "abcde" = "abcde" and fun^{-1} "abcdef" = \bot .
- ▶ Let fun = drop 5. Then, fun⁻¹ "abcde" = $\bot : \bot : \bot : \bot : \bot : \bot :$ "abcde".

- ▶ Let fun = reverse.
 Then, fun⁻¹ "abcdef" = "fedcba".
- ▶ Let fun = take 5. Then, fun^{-1} "abcde" = "abcde" and fun^{-1} "abcdef" = \bot .
- ▶ Let fun = drop 5. Then, fun^{-1} "abcde" = $\bot : \bot : \bot : \bot : \bot : \bot :$ "abcde".
- ▶ Let $fun = \lambda xs \rightarrow xs + xs$. Then, fun^{-1} "abcabc" = "abc" and fun^{-1} "abcdef" = \bot .

- ▶ Let fun = reverse.
 Then, fun⁻¹ "abcdef" = "fedcba".
- ▶ Let fun = take 5. Then, fun⁻¹ "abcde" = "abcde" and fun⁻¹ "abcdef" = \bot .
- ▶ Let fun = drop 5. Then, fun^{-1} "abcde" = $\bot : \bot : \bot : \bot : \bot :$ "abcde".
- ▶ Let $fun = \lambda xs \rightarrow xs + xs$. Then, fun^{-1} "abcabc" = "abc" and fun^{-1} "abcdef" = \bot .
- **.**...

1. Give an example of fun and ys where fun⁻¹ ys is defined, but fun (fun⁻¹ ys) \neq ys.

- 1. Give an example of fun and ys where fun⁻¹ ys is defined, but fun (fun⁻¹ ys) \neq ys.
- 2. Give an example of fun and xs where for ys = fun xs, fun $(\text{fun}^{-1} ys) \neq ys$.

- 1. Give an example of fun and ys where fun⁻¹ ys is defined, but fun $(\text{fun}^{-1} \text{ ys}) \neq \text{ys}$.
- 2. Give an example of fun and xs where for ys = fun xs, fun $(\text{fun}^{-1} ys) \neq ys$.
- 3. Give an example of fun and xs where fun⁻¹ (fun xs) \neq xs.

- 1. Give an example of fun and ys where fun⁻¹ ys is defined, but fun $(\text{fun}^{-1} \text{ ys}) \neq \text{ys}$.
- 2. Give an example of fun and xs where for ys = fun xs, fun $(\text{fun}^{-1} ys) \neq ys$.
- 3. Give an example of fun and xs where fun⁻¹ (fun xs) \neq xs.
- 4. Actually prove that for every xs, fun⁻¹ (fun xs) is defined, and that whenever fun⁻¹ ys is defined, fun (fun⁻¹ ys) == ys.

- 1. Give an example of fun and ys where fun⁻¹ ys is defined, but fun $(\text{fun}^{-1} \text{ ys}) \neq \text{ys}$.
- 2. Give an example of fun and xs where for ys = fun xs, fun $(\text{fun}^{-1} ys) \neq ys$.
- 3. Give an example of fun and xs where fun⁻¹ (fun xs) \neq xs.
- 4. Actually prove that for every xs, fun⁻¹ (fun xs) is defined, and that whenever fun⁻¹ ys is defined, fun (fun⁻¹ ys) == ys.
- Generalize from lists to other data types.

Bidirectional Transformation

Bidirectional Transformation

Bidirectionalization for Free! [V., POPL'09]

HCAR

Don't forget to submit entries about your projects to the upcoming Haskell Communities and Activities Report!