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The Problem Statement

x y
fun

Want (given fun, find fun−1 such that):

I for every x , fun−1 (fun x) = x (1)

I for every y , fun (fun−1 y) = y (2)

Problems:

I (1) not possible if fun is not injective

I (2) not possible if fun is not surjective

I even with appropriate side conditions,
and/or requiring only one of (1) and (2),
in general fun−1 not effectively computable from fun
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A More Realistic Problem

Making the problem simpler:

I restrict to a particular type: fun :: [a ]→ [a ]

I require only (2): fun (fun−1 ys) = ys

I allow fun−1 to be partial, and
demand (2) only for ys for which fun−1 is defined, but
demand fun−1 to be defined for all images of fun

. . . and simultaneously more complicated:

I prevent any inspection of the definition of fun !

Of course, some access to fun must be possible:

I can ask for fun’s outputs for specific inputs

I anytime, dynamically
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Phrased as a Game

Rules:

I Alice implements a function fun :: [a ]→ [a ]

I Bob has to try to implement a function fun−1 :: [a ]→ [a ]
I can call function fun on specific inputs
I can even use it inside the definition of fun−1,

“linking” against it
I but no dirty tricks, disassembling, . . .
I has to guarantee that for every xs, fun−1 (fun xs) is defined,

and that whenever fun−1 ys is defined, fun (fun−1 ys) = ys

Who will win?

Observation: If Bob has a winning strategy, he must be able to
do without asking Alice for specific inputs up front,
instead only provide a single definition of fun−1 that
works for all fun.
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Decomposing the Problem

A possible approach for Bob:
I He is only obliged to define fun−1 for images of fun.

I Given a ys, he could try to find any xs with fun xs = ys.
I It would be a good start if at least the length of xs could be

guessed somehow. So let’s assume there is some function

lengthInv :: [a ]→ Int

such that for every ys in the image of fun, lengthInv ys
gives an n such that there is an xs of length n with
fun xs = ys.

I Then, an appropriate xs could be identified via:

fun−1 :: [a ]→ [a ]
fun−1 ys = let n = lengthInv ys

t = [1 . . n ]
h = zip (fun t) ys

in map (fromJust ◦ flip lookup h) t
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Decomposing the Problem Further

How to implement lengthInv:

I If Bob had a function

checkLength :: Int→ [a ]→ Bool

such that checkLength n ys checks whether there is an xs of
length n with fun xs = ys, then he could write:

lengthInv :: [a ]→ Int
lengthInv ys = head [n | n← [0 . .], checkLength n ys ]

I It would be tempting to implement checkLength as follows:

checkLength :: Int→ [a ]→ Bool
checkLength n ys = length (fun [1 . . n ]) == length ys

I But that would be wrong! Why?
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A Problematic Case

Let

fun :: [a ]→ [a ]
fun xs = xs ++ xs

Then, with the current definitions of checkLength, lengthInv,
and fun−1:

fun−1 "abcdef" = "abc"

but:
fun "abc" = "abcabc"

which violates the requirement that whenever fun−1 ys is defined,
fun (fun−1 ys) = ys.

Intuition: In checkLength, should check that not only has
fun [1 . . n ] the same length as ys, but also if two ele-
ments at positions i and j in fun [1 . . n ] are equal,
then for the corresponding positions in ys, yi = yj .
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Some (Necessary) Restrictions

I Need to assume that elements in ys can be compared. Then:

checkLength :: Eq a⇒ Int→ [a ]→ Bool
checkLength n ys =

let t ′ = fun [1 . . n ]
in length t ′ == length ys ∧

and [(i == j) 6 (y == z) | let zs = zip t ′ ys,
(i , y)← zs, (j , z)← zs ]

I lengthInv :: Eq a⇒ [a ]→ Int, fun−1 :: Eq a⇒ [a ]→ [a ]

I Instead of fun (fun−1 ys) = ys, get only
fun (fun−1 ys) == ys (whenever fun−1 ys is defined).

I Need to assume that instances of Eq used are reflexive,
transitive, and symmetric.
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Some Examples

I Let fun = reverse.
Then, fun−1 "abcdef" = "fedcba".

I Let fun = take 5.
Then, fun−1 "abcde" = "abcde" and fun−1 "abcdef" = ⊥.

I Let fun = drop 5.
Then, fun−1 "abcde" = ⊥ :⊥ :⊥ :⊥ :⊥ : "abcde".

I Let fun = λxs → xs ++ xs.
Then, fun−1 "abcabc" = "abc" and fun−1 "abcdef" = ⊥.

I . . .
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Exercises

1. Give an example of fun and ys where fun−1 ys is defined, but
fun (fun−1 ys) 6= ys.

2. Give an example of fun and xs where for ys = fun xs,
fun (fun−1 ys) 6= ys.

3. Give an example of fun and xs where fun−1 (fun xs) 6= xs.

4. Actually prove that for every xs, fun−1 (fun xs) is defined,
and that whenever fun−1 ys is defined,
fun (fun−1 ys) == ys.

5. Generalize from lists to other data types.
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Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update
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source view

s v

s ′ v ′

get

put

update

X

Bidirectionalization for Free!

[V., POPL’09]
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HCAR

Don’t forget to submit entries about your

projects to the upcoming

Haskell Communities and Activities Report!
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