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Semantic Bidirectionalization (Complete, for Lists)

put :: Eq α⇒ [α]→ [α] ⇀ [α]
put [ ] [ ] = [ ]
put s v ′ | (s /= [ ]) =

let t = [0..((length s)− 1)]
g = IntMap.fromDistinctAscList (zip t s)
h = assoc (get t) v ′

h′ = IntMap.union h g
in map (λi → fromJust (IntMap.lookup i h′)) t

assoc :: Eq α⇒ [Int]→ [α] ⇀ IntMap α
assoc [ ] [ ] = IntMap.empty
assoc (i : is) (b : bs) =

let m = assoc is bs
in case IntMap.lookup i m of

Nothing → IntMap.insert i b m
Just c | (b == c)→ m
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Some Experiments Done

Measurements "halve, normalized"
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Many Questions

I Do we even care (yet) about efficiency issues?

I What is it that we should measure/compare?
Efficiency in terms of what?

I What are the sources of inefficiency?

I How can we improve efficiency?

I Does it have side effects for
qualitative/semantic issues?
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What to Measure/Compare?

Measurements "halve, normalized"
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Possible alternatives:

I measure whole roundtrips

I measure over histories, for incrementality

I account for more fine-grained cost division

I make v ′ variable as well

I express in terms of “update delta”

I ???
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Sources of Inefficiency?

I Syntactic Bidirectionalization:

I explicit computation of complement
I nondeterminism in syntactically inverted

intermediate program

I Semantic Bidirectionalization:

I costly management of index map
I a lot of abstraction overhead
I lack of intensional knowledge about get

I Technique XYZ:

I ???
I . . .
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How to Improve Efficiency?

I Obviously, by removing sources of inefficiency. ,

I Algorithm/data structure engineering?

I Partial application/evaluation:

〈get, put〉 :: S → (V ,V ⇀ S)

I Inlining get, plus equational reasoning?

I More standard program transformations?

I ???
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