
Efficiency of
Bidirectional Transformations

J. Voigtländer

University of Bonn

Dagstuhl Seminar “bx”

January 20th, 2011

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Syntactic

Bidirectionalization

[Matsuda et al., ICFP’07]

1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Syntactic Bidirectionalization

[Matsuda et al., ICFP’07]
1

Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

X

Semantic Bidirectionalization

[V., POPL’09]
1

Semantic Bidirectionalization (Complete, for Lists)

put :: Eq α⇒ [α]→ [α] ⇀ [α]
put [] [] = []
put s v ′ | (s /= []) =

let t = [0..((length s)− 1)]
g = IntMap.fromDistinctAscList (zip t s)
h = assoc (get t) v ′

h′ = IntMap.union h g
in map (λi → fromJust (IntMap.lookup i h′)) t

assoc :: Eq α⇒ [Int]→ [α] ⇀ IntMap α
assoc [] [] = IntMap.empty
assoc (i : is) (b : bs) =

let m = assoc is bs
in case IntMap.lookup i m of

Nothing → IntMap.insert i b m
Just c | (b == c)→ m

2

Some Experiments Done

Measurements "halve, normalized"

A
v
e
ra

g
e
 tim

e
 p

e
r ru

n
 in

 m
s

0

5.0e-3

1.0e-2

1.5e-2

2.0e-2

0 20000 40000 60000 80000 100000
Size of original source

manual (put) automatic (bff get)

3

Many Questions

I Do we even care (yet) about efficiency issues?

I What is it that we should measure/compare?
Efficiency in terms of what?

I What are the sources of inefficiency?

I How can we improve efficiency?

I Does it have side effects for
qualitative/semantic issues?

4

Many Questions

I Do we even care (yet) about efficiency issues?

I What is it that we should measure/compare?
Efficiency in terms of what?

I What are the sources of inefficiency?

I How can we improve efficiency?

I Does it have side effects for
qualitative/semantic issues?

4

Many Questions

I Do we even care (yet) about efficiency issues?

I What is it that we should measure/compare?
Efficiency in terms of what?

I What are the sources of inefficiency?

I How can we improve efficiency?

I Does it have side effects for
qualitative/semantic issues?

4

Many Questions

I Do we even care (yet) about efficiency issues?

I What is it that we should measure/compare?
Efficiency in terms of what?

I What are the sources of inefficiency?

I How can we improve efficiency?

I Does it have side effects for
qualitative/semantic issues?

4

Many Questions

I Do we even care (yet) about efficiency issues?

I What is it that we should measure/compare?
Efficiency in terms of what?

I What are the sources of inefficiency?

I How can we improve efficiency?

I Does it have side effects for
qualitative/semantic issues?

4

What to Measure/Compare?

Measurements "halve, normalized"

A
v
e
ra

g
e
 tim

e
 p

e
r ru

n
 in

 m
s

0

5.0e-3

1.0e-2

1.5e-2

2.0e-2

0 20000 40000 60000 80000 100000
Size of original source

manual (put) automatic (bff get)

runtime of put v ′ s, variable |s|

Possible alternatives:

I measure whole roundtrips

I measure over histories, for incrementality

I account for more fine-grained cost division

I make v ′ variable as well

I express in terms of “update delta”

I ???

5

What to Measure/Compare?

Measurements "halve, normalized"

A
v
e
ra

g
e
 tim

e
 p

e
r ru

n
 in

 m
s

0

5.0e-3

1.0e-2

1.5e-2

2.0e-2

0 20000 40000 60000 80000 100000
Size of original source

manual (put) automatic (bff get)

runtime of put v ′ s, variable |s|

Possible alternatives:

I measure whole roundtrips

I measure over histories, for incrementality

I account for more fine-grained cost division

I make v ′ variable as well

I express in terms of “update delta”

I ???

5

What to Measure/Compare?

Measurements "halve, normalized"

A
v
e
ra

g
e
 tim

e
 p

e
r ru

n
 in

 m
s

0

5.0e-3

1.0e-2

1.5e-2

2.0e-2

0 20000 40000 60000 80000 100000
Size of original source

manual (put) automatic (bff get)

runtime of put v ′ s, variable |s|

Possible alternatives:

I measure whole roundtrips

I measure over histories, for incrementality

I account for more fine-grained cost division

I make v ′ variable as well

I express in terms of “update delta”

I ???

5

What to Measure/Compare?

Measurements "halve, normalized"

A
v
e
ra

g
e
 tim

e
 p

e
r ru

n
 in

 m
s

0

5.0e-3

1.0e-2

1.5e-2

2.0e-2

0 20000 40000 60000 80000 100000
Size of original source

manual (put) automatic (bff get)

runtime of put v ′ s, variable |s|

Possible alternatives:

I measure whole roundtrips

I measure over histories, for incrementality

I account for more fine-grained cost division

I make v ′ variable as well

I express in terms of “update delta”

I ???

5

What to Measure/Compare?

Measurements "halve, normalized"

A
v
e
ra

g
e
 tim

e
 p

e
r ru

n
 in

 m
s

0

5.0e-3

1.0e-2

1.5e-2

2.0e-2

0 20000 40000 60000 80000 100000
Size of original source

manual (put) automatic (bff get)

runtime of put v ′ s, variable |s|

Possible alternatives:

I measure whole roundtrips

I measure over histories, for incrementality

I account for more fine-grained cost division

I make v ′ variable as well

I express in terms of “update delta”

I ???

5

What to Measure/Compare?

Measurements "halve, normalized"

A
v
e
ra

g
e
 tim

e
 p

e
r ru

n
 in

 m
s

0

5.0e-3

1.0e-2

1.5e-2

2.0e-2

0 20000 40000 60000 80000 100000
Size of original source

manual (put) automatic (bff get)

runtime of put v ′ s, variable |s|

Possible alternatives:

I measure whole roundtrips

I measure over histories, for incrementality

I account for more fine-grained cost division

I make v ′ variable as well

I express in terms of “update delta”

I ???

5

What to Measure/Compare?

Measurements "halve, normalized"

A
v
e
ra

g
e
 tim

e
 p

e
r ru

n
 in

 m
s

0

5.0e-3

1.0e-2

1.5e-2

2.0e-2

0 20000 40000 60000 80000 100000
Size of original source

manual (put) automatic (bff get)

runtime of put v ′ s, variable |s|

Possible alternatives:

I measure whole roundtrips

I measure over histories, for incrementality

I account for more fine-grained cost division

I make v ′ variable as well

I express in terms of “update delta”

I ???

5

Sources of Inefficiency?

I Syntactic Bidirectionalization:

I explicit computation of complement
I nondeterminism in syntactically inverted

intermediate program

I Semantic Bidirectionalization:

I costly management of index map
I a lot of abstraction overhead
I lack of intensional knowledge about get

I Technique XYZ:

I ???
I . . .

6

Sources of Inefficiency?

I Syntactic Bidirectionalization:

I explicit computation of complement
I nondeterminism in syntactically inverted

intermediate program

I Semantic Bidirectionalization:

I costly management of index map
I a lot of abstraction overhead
I lack of intensional knowledge about get

I Technique XYZ:

I ???
I . . .

6

Sources of Inefficiency?

I Syntactic Bidirectionalization:

I explicit computation of complement
I nondeterminism in syntactically inverted

intermediate program

I Semantic Bidirectionalization:

I costly management of index map
I a lot of abstraction overhead
I lack of intensional knowledge about get

I Technique XYZ:

I ???
I . . .

6

How to Improve Efficiency?

I Obviously, by removing sources of inefficiency. ,

I Algorithm/data structure engineering?

I Partial application/evaluation:

〈get, put〉 :: S → (V ,V ⇀ S)

I Inlining get, plus equational reasoning?

I More standard program transformations?

I ???

7

How to Improve Efficiency?

I Obviously, by removing sources of inefficiency. ,

I Algorithm/data structure engineering?

I Partial application/evaluation:

〈get, put〉 :: S → (V ,V ⇀ S)

I Inlining get, plus equational reasoning?

I More standard program transformations?

I ???

7

Semantic Bidirectionalization (Complete, for Lists)

put :: Eq α⇒ [α]→ [α] ⇀ [α]
put [] [] = []
put s v ′ | (s /= []) =

let t = [0..((length s)− 1)]
g = IntMap.fromDistinctAscList (zip t s)
h = assoc (get t) v ′

h′ = IntMap.union h g
in map (λi → fromJust (IntMap.lookup i h′)) t

assoc :: Eq α⇒ [Int]→ [α] ⇀ IntMap α
assoc [] [] = IntMap.empty
assoc (i : is) (b : bs) =

let m = assoc is bs
in case IntMap.lookup i m of

Nothing → IntMap.insert i b m
Just c | (b == c)→ m

8

How to Improve Efficiency?

I Obviously, by removing sources of inefficiency. ,

I Algorithm/data structure engineering?

I Partial application/evaluation:

〈get, put〉 :: S → (V ,V ⇀ S)

I Inlining get, plus equational reasoning?

I More standard program transformations?

I ???

9

How to Improve Efficiency?

I Obviously, by removing sources of inefficiency. ,

I Algorithm/data structure engineering?

I Partial application/evaluation:

〈get, put〉 :: S → (V ,V ⇀ S)

I Inlining get, plus equational reasoning?

I More standard program transformations?

I ???

9

Semantic Bidirectionalization (Complete, for Lists)

put :: Eq α⇒ [α]→ [α] ⇀ [α]
put [] [] = []
put s v ′ | (s /= []) =

let t = [0..((length s)− 1)]
g = IntMap.fromDistinctAscList (zip t s)
h = assoc (get t) v ′

h′ = IntMap.union h g
in map (λi → fromJust (IntMap.lookup i h′)) t

assoc :: Eq α⇒ [Int]→ [α] ⇀ IntMap α
assoc [] [] = IntMap.empty
assoc (i : is) (b : bs) =

let m = assoc is bs
in case IntMap.lookup i m of

Nothing → IntMap.insert i b m
Just c | (b == c)→ m

10

How to Improve Efficiency?

I Obviously, by removing sources of inefficiency. ,

I Algorithm/data structure engineering?

I Partial application/evaluation:

〈get, put〉 :: S → (V ,V ⇀ S)

I Inlining get, plus equational reasoning?

I More standard program transformations?

I ???

11

How to Improve Efficiency?

I Obviously, by removing sources of inefficiency. ,

I Algorithm/data structure engineering?

I Partial application/evaluation:

〈get, put〉 :: S → (V ,V ⇀ S)

I Inlining get, plus equational reasoning?

I More standard program transformations?

I ???

11

Semantic Bidirectionalization (Complete, for Lists)

put :: Eq α⇒ [α]→ [α] ⇀ [α]
put [] [] = []
put s v ′ | (s /= []) =

let t = [0..((length s)− 1)]
g = IntMap.fromDistinctAscList (zip t s)
h = assoc (get t) v ′

h′ = IntMap.union h g
in map (λi → fromJust (IntMap.lookup i h′)) t

assoc :: Eq α⇒ [Int]→ [α] ⇀ IntMap α
assoc [] [] = IntMap.empty
assoc (i : is) (b : bs) =

let m = assoc is bs
in case IntMap.lookup i m of

Nothing → IntMap.insert i b m
Just c | (b == c)→ m

12

How to Improve Efficiency?

I Obviously, by removing sources of inefficiency. ,

I Algorithm/data structure engineering?

I Partial application/evaluation:

〈get, put〉 :: S → (V ,V ⇀ S)

I Inlining get, plus equational reasoning?

I More standard program transformations?

I ???

13

Many Questions

I Do we even care (yet) about efficiency issues?

I What is it that we should measure/compare?
Efficiency in terms of what?

I What are the sources of inefficiency?

I How can we improve efficiency?

I Does it have side effects for
qualitative/semantic issues?

14

References

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic
derivation of view complement functions.
In International Conference on Functional Programming,
Proceedings, pages 47–58. ACM Press, 2007.

J. Voigtländer.
Bidirectionalization for free!
In Principles of Programming Languages, Proceedings, pages
165–176. ACM Press, 2009.

15

	Bidirectional Transformation
	References

