
Complement-Based
Bidirectionalization

J. Voigtländer

University of Bonn

Dagstuhl Seminar “bx”

January 17th, 2011



Bidirectional Transformation

source view

s v

s ′ v ′

get

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

update

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

1



Bidirectional Transformation

source view

s v

s v

get

=

Acceptability / GetPut

1



Bidirectional Transformation

source view

s v

s v

get

put

==

Acceptability / GetPut

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Consistency / PutGet

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

get

Consistency / PutGet

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Syntactic

Bidirectionalization

[Matsuda et al., ICFP’07]

1



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Syntactic Bidirectionalization

[Matsuda et al., ICFP’07]
1



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

X

Semantic Bidirectionalization

[V., POPL’09]
1



The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :: S → V

define a C and

res :: S → C

such that

paired = λs → (get s, res s)

is injective and has an inverse inv :: (V ,C )→ S .

Then:
put :: V → S → S
put v ′ s = inv (v ′, res s)

2



The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :: S → V

define a C and

res :: S → C

such that

paired = λs → (get s, res s)

is injective and has an inverse inv :: (V ,C )→ S .

Then:
put :: V → S → S
put v ′ s = inv (v ′, res s)

2



The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :: S → V

define a C and

res :: S → C

such that

paired = λs → (get s, res s)

is injective

and has an inverse inv :: (V ,C )→ S .

Then:
put :: V → S → S
put v ′ s = inv (v ′, res s)

2



The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :: S → V

define a C and

res :: S → C

such that

paired = λs → (get s, res s)

is injective and has an inverse inv :: (V ,C )→ S .

Then:
put :: V → S → S
put v ′ s = inv (v ′, res s)

2



The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :: S → V

define a C and

res :: S → C

such that

paired = λs → (get s, res s)

is injective and has an inverse inv :: (V ,C )→ S .

Then:
put :: V → S → S
put v ′ s = inv (v ′, res s)

2



The Constant-Complement Approach

Guarantees “reasonability”:

I put (get s) s = s

I get (put v ′ s) = v ′

I put v ′′ (put v ′ s) = put v ′′ s

Example:

inv :: (Nat,Nat2)→ Nat
inv (v ′, c) = 2 ∗ v ′ + c

Then:

put :: Nat→ Nat→ Nat
put v ′ s = inv (v ′, res s)

= 2 ∗ v ′ + s ‘mod‘ 2

Another choice for complement:

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

3



The Constant-Complement Approach

Guarantees “reasonability”:

I put (get s) s = s

I get (put v ′ s) = v ′

I put v ′′ (put v ′ s) = put v ′′ s

Example:

get :: Nat→ Nat
get n = n ‘div‘ 2

inv :: (Nat,Nat2)→ Nat
inv (v ′, c) = 2 ∗ v ′ + c

Then:

put :: Nat→ Nat→ Nat
put v ′ s = inv (v ′, res s)

= 2 ∗ v ′ + s ‘mod‘ 2

Another choice for complement:

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

3



The Constant-Complement Approach

Guarantees “reasonability”:

I put (get s) s = s

I get (put v ′ s) = v ′

I put v ′′ (put v ′ s) = put v ′′ s

Example:

get :: Nat→ Nat res :: Nat→ Nat2
get n = n ‘div‘ 2 res n = n ‘mod‘ 2

inv :: (Nat,Nat2)→ Nat
inv (v ′, c) = 2 ∗ v ′ + c

Then:

put :: Nat→ Nat→ Nat
put v ′ s = inv (v ′, res s)

= 2 ∗ v ′ + s ‘mod‘ 2

Another choice for complement:

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

3



The Constant-Complement Approach

Guarantees “reasonability”:

I put (get s) s = s

I get (put v ′ s) = v ′

I put v ′′ (put v ′ s) = put v ′′ s

Example:

get :: Nat→ Nat res :: Nat→ Nat2
get n = n ‘div‘ 2 res n = n ‘mod‘ 2

inv :: (Nat,Nat2)→ Nat
inv (v ′, c) = 2 ∗ v ′ + c

Then:

put :: Nat→ Nat→ Nat
put v ′ s = inv (v ′, res s)

= 2 ∗ v ′ + s ‘mod‘ 2

Another choice for complement:

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

3



The Constant-Complement Approach

Example:

get :: Nat→ Nat res :: Nat→ Nat2
get n = n ‘div‘ 2 res n = n ‘mod‘ 2

inv :: (Nat,Nat2)→ Nat
inv (v ′, c) = 2 ∗ v ′ + c

Then:

put :: Nat→ Nat→ Nat
put v ′ s = inv (v ′, res s)

= 2 ∗ v ′ + s ‘mod‘ 2

Another choice for complement:

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

3



The Constant-Complement Approach

Example:

get :: Nat→ Nat res :: Nat→ Nat2
get n = n ‘div‘ 2 res n = n ‘mod‘ 2

inv :: (Nat,Nat2)→ Nat
inv (v ′, c) = 2 ∗ v ′ + c

Then:

put :: Nat→ Nat→ Nat
put v ′ s = inv (v ′, res s)

= 2 ∗ v ′ + s ‘mod‘ 2

Another choice for complement:

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

3



The Constant-Complement Approach

Example:

get :: Nat→ Nat res :: Nat→ Nat2
get n = n ‘div‘ 2 res n = n ‘mod‘ 2

inv :: (Nat,Nat2)→ Nat
inv (v ′, c) = 2 ∗ v ′ + c

Then:

put :: Nat→ Nat→ Nat
put v ′ s = inv (v ′, res s)

= 2 ∗ v ′ + s ‘mod‘ 2

Another choice for complement:

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

3



The Constant-Complement Approach

Example:

get :: Nat→ Nat res :: Nat→ Nat2
get n = n ‘div‘ 2 res n = n ‘mod‘ 2

Another choice for complement:

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

3



The Constant-Complement Approach

Example:

get :: Nat→ Nat res :: Nat→ Nat2
get n = n ‘div‘ 2 res n = n ‘mod‘ 2

Another choice for complement:

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

3



The Constant-Complement Approach

Example:

get :: Nat→ Nat res :: Nat→ Nat2
get n = n ‘div‘ 2 res n = n ‘mod‘ 2

Another choice for complement:

get :: Nat→ Nat res :: Nat→ Nat
get n = n ‘div‘ 2 res n = n

inv :: (Nat,Nat) ⇀ Nat
inv (v ′, c) | (v ′ == get c) = c

Then:
put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

3



Catering for Partiality

Still require that get :: S → V and res :: S → C
are total and that paired is injective.

But allow inv :: (V ,C ) ⇀ S , and instead of being
a full inverse of paired, only require that:

I inv ◦ paired = id

I paired ◦ inv v id

Guarantees (only):

I put (get s) s = s

I get (put v ′ s) v v ′

I (put v ′ s)⇓ ⇒ put v ′′ (put v ′ s) = put v ′′ s

4



Catering for Partiality

Still require that get :: S → V and res :: S → C
are total and that paired is injective.

But allow inv :: (V ,C ) ⇀ S , and instead of being
a full inverse of paired, only require that:

I inv ◦ paired = id

I paired ◦ inv v id

Guarantees (only):

I put (get s) s = s

I get (put v ′ s) v v ′

I (put v ′ s)⇓ ⇒ put v ′′ (put v ′ s) = put v ′′ s

4



Catering for Partiality

Still require that get :: S → V and res :: S → C
are total and that paired is injective.

But allow inv :: (V ,C ) ⇀ S , and instead of being
a full inverse of paired, only require that:

I inv ◦ paired = id

I paired ◦ inv v id

Guarantees (only):

I put (get s) s = s

I get (put v ′ s) v v ′

I (put v ′ s)⇓ ⇒ put v ′′ (put v ′ s) = put v ′′ s
4



Choices to Make

For
get :: Nat→ Nat
get n = n ‘div‘ 2

clearly
put :: Nat→ Nat→ Nat
put v ′ s = 2 ∗ v ′ + s ‘mod‘ 2

better than

put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

But what about:

put :: Nat→ Nat→ Nat
put v ′ s = 2 ∗ v ′ + (v ′ + ((s + 1) ‘mod‘ 4) ‘div‘ 2) ‘mod‘ 2

5



Choices to Make

For
get :: Nat→ Nat
get n = n ‘div‘ 2

clearly
put :: Nat→ Nat→ Nat
put v ′ s = 2 ∗ v ′ + s ‘mod‘ 2

better than

put :: Nat→ Nat ⇀ Nat
put v ′ s | (v ′ == get s) = s

But what about:

put :: Nat→ Nat→ Nat
put v ′ s = 2 ∗ v ′ + (v ′ + ((s + 1) ‘mod‘ 4) ‘div‘ 2) ‘mod‘ 2

5



Choices to Make

Different complement functions (res) lead to
different update functions (put):

v ′ \ s 0 1 2 3

0 0 1 0 1
1 2 3 2 3
2 4 5 4 5
3 6 7 6 7

vs.

v ′ \ s 0 1 2 3

0 0 1 1 0
1 3 2 2 3
2 4 5 5 4
3 7 6 6 7

In fact, res :: S → C is the only “handle” we have
for influencing the choice of put.

6



Choices to Make

Different complement functions (res) lead to
different update functions (put):

v ′ \ s 0 1 2 3

0 0 1 0 1
1 2 3 2 3
2 4 5 4 5
3 6 7 6 7

vs.

v ′ \ s 0 1 2 3

0 0 1 1 0
1 3 2 2 3
2 4 5 5 4
3 7 6 6 7

In fact, res :: S → C is the only “handle” we have
for influencing the choice of put.

6



Small Complements

The bad thing about

res :: Nat→ Nat
res n = n

is that it is “too injective”.

Note that we need

paired = λs → (get s, res s)

to be injective, but not res itself.

In fact, the “less injective”, the better!

7



Small Complements

The bad thing about

res :: Nat→ Nat
res n = n

is that it is “too injective”.

Note that we need

paired = λs → (get s, res s)

to be injective, but not res itself.

In fact, the “less injective”, the better!

7



Small Complements

The bad thing about

res :: Nat→ Nat
res n = n

is that it is “too injective”.

Note that we need

paired = λs → (get s, res s)

to be injective, but not res itself.

In fact, the “less injective”, the better!

7



Small Complements

Formally:

res1 � res2 ⇔ (ker res2) ⊆ (ker res1)

Clearly fulfilled for:

res1 :: Nat→ Nat2 res2 :: Nat→ Nat
res1 n = n ‘mod‘ 2 res2 n = n

Theorem [Bancilhon & Spyratos, ACM TODS’81]:
For given get :: S → V ,

res1 � res2 ⇔ ∀v ′, s. put2 v ′ s v put1 v ′ s

8



Small Complements

Formally:

res1 � res2 ⇔ (ker res2) ⊆ (ker res1)

Clearly fulfilled for:

res1 :: Nat→ Nat2 res2 :: Nat→ Nat
res1 n = n ‘mod‘ 2 res2 n = n

Theorem [Bancilhon & Spyratos, ACM TODS’81]:
For given get :: S → V ,

res1 � res2 ⇔ ∀v ′, s. put2 v ′ s v put1 v ′ s

8



Small Complements

Formally:

res1 � res2 ⇔ (ker res2) ⊆ (ker res1)

Clearly fulfilled for:

res1 :: Nat→ Nat2 res2 :: Nat→ Nat
res1 n = n ‘mod‘ 2 res2 n = n

Theorem [Bancilhon & Spyratos, ACM TODS’81]:
For given get :: S → V ,

res1 � res2 ⇔ ∀v ′, s. put2 v ′ s v put1 v ′ s

8



Summary of the Approach to Bidirectionalization

Given get :: S → V , find C and res :: S → C such
that paired = λs → (get s, res s) is injective and
res is as small as possible with respect to �.

Define (an effective!) inv :: (V ,C ) ⇀ S with:

inv (v ′, c) =

{
⊥ if ¬∃s ′. paired s ′ = (v ′, c)

s ′ if paired s ′ = (v ′, c)

Set:

put :: V → S ⇀ S
put v ′ s = inv (v ′, res s)

9



Summary of the Approach to Bidirectionalization

Given get :: S → V , find C and res :: S → C such
that paired = λs → (get s, res s) is injective and
res is as small as possible with respect to �.

Define (an effective!) inv :: (V ,C ) ⇀ S with:

inv (v ′, c) =

{
⊥ if ¬∃s ′. paired s ′ = (v ′, c)

s ′ if paired s ′ = (v ′, c)

Set:

put :: V → S ⇀ S
put v ′ s = inv (v ′, res s)

9



Summary of the Approach to Bidirectionalization

Given get :: S → V , find C and res :: S → C such
that paired = λs → (get s, res s) is injective and
res is as small as possible with respect to �.

Define (an effective!) inv :: (V ,C ) ⇀ S with:

inv (v ′, c) =

{
⊥ if ¬∃s ′. paired s ′ = (v ′, c)

s ′ if paired s ′ = (v ′, c)

Set:

put :: V → S ⇀ S
put v ′ s = inv (v ′, res s)

9



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

Syntactic Bidirectionalization

[Matsuda et al., ICFP’07]
10



Bidirectional Transformation

source view

s v

s ′ v ′

get

put

update

X

Semantic Bidirectionalization

[V., POPL’09]
10



Taking Stock

[Matsuda et al., ICFP’07]:

I depends on syntactic restraints

I allows (ad-hoc) some shape-changing updates

[V., POPL’09]:

I very lightweight, easy access to bidirectionality

I essential role: polymorphic function types

I major problem: rejects shape-changing updates

[V. et al., ICFP’10]:

I synthesis of the two techniques

I inherits limitations in program coverage from both

I strictly better in terms of updatability than either
11



Scorecard
syntactic semantic combined

Update? State-based

Bijective? No

Well behaved? Yes

Very well behaved? Yes No

Choice of put? No Yes

Total? No
12



References I

F. Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557–575, 1981.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic
derivation of view complement functions.
In International Conference on Functional Programming,
Proceedings, pages 47–58. ACM Press, 2007.

J. Voigtländer, Z. Hu, K. Matsuda, and M. Wang.
Combining syntactic and semantic bidirectionalization.
In International Conference on Functional Programming,
Proceedings, pages 181–192. ACM Press, 2010.

13



References II

J. Voigtländer.
Bidirectionalization for free!
In Principles of Programming Languages, Proceedings, pages
165–176. ACM Press, 2009.

P. Wadler.
Theorems for free!
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347–359. ACM Press, 1989.

14


	Bidirectional Transformation
	The Constant-Complement Approach
	Conclusion
	References

