Complement-Based
Bidirectionalization

J. Voigtlander

University of Bonn

Dagstuhl Seminar “bx”
January 17th, 2011

Bidirectional Transformation

source view

get R ii

Bidirectional Transformation

source

/N

get

view

update

>

Bidirectional Transformation

source

/N
QN

get

A

put

view

>

update

>

Bidirectional Transformation

source

/N
QN

view
get R i i
update
N &

Bidirectional Transformation

source view

i j get R

/N
/N

Acceptability / GetPut

Bidirectional Transformation

source view

get

<

>

=
N

Acceptability / GetPut

Bidirectional Transformation

source view
i j get R i i
update

AN VN

Consistency / PutGet

Bidirectional Transformation

source view
i j get R ij
update
A‘ put &
\/
get

Consistency / PutGet

Bidirectional Transformation

source

view

update

Bidirectional Transformation

source view
i j get R i i
update

P

A

= /\

Bidirectionalization

Bidirectional Transformation

source view
i j get - i j
update

[N A/

Syntactic Bidirectionalization

[Matsuda et al., ICFP'07]

Bidirectional Transformation

source view
i j get R i i
update

Semantic Bidirectionalization

[V., POPL'09]

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS’81]

Given
get 1S =V

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS’81]

Given
get 1S =V
define a C and

res::S—>C

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :S—=V
define a C and
res:S—C
such that
paired = As — (get s,res s)

is injective

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :S—=V
define a C and
res:S—C
such that
paired = As — (get s,res s)

is injective and has an inverse inv :: (V,C) — S.

The Constant-Complement Approach
[Bancilhon & Spyratos, ACM TODS’81]

Given
get :S—=V
define a C and
res:S—C
such that
paired = As — (get s,res s)

is injective and has an inverse inv :: (V,C) — S.

Then:
putzV—-5—S5

put v/ s = inv (V/,res s)

The Constant-Complement Approach
Guarantees “reasonability”:
» put (get s) s=s
» get (put v/ s) =V

» put v/ (put v/ s) =put v’ s

The Constant-Complement Approach
Guarantees “reasonability”:
» put (get s) s=s
» get (put v/ s) =V
» put v/ (put v/ s) =put v’ s
Example:

get 1 Nat — Nat
get n=n'div’ 2

The Constant-Complement Approach
Guarantees “reasonability”:
» put (get s) s=s
» get (put v/ s) =V
» put v/ (put v/ s) =put v’ s
Example:

get 1 Nat — Nat res 1 Nat — Natp
get n=n'div’ 2 res n=n ‘mod 2

The Constant-Complement Approach
Guarantees “reasonability”:
» put (get s) s=s
» get (put v/ s) =V
» put v/ (put v/ s) =put v’ s
Example:

get 1 Nat — Nat res 1 Nat — Natp
get n=n'div’ 2 res n=n ‘mod 2

inv :: (Nat, Naty) — Nat
inv (V,c) =2V +¢

The Constant-Complement Approach

Example:
get :: Nat — Nat res :: Nat — Nat,

get n=n'div’ 2 res n=n ‘mod’ 2

inv :: (Nat, Naty) — Nat
inv (V,c)=2%Vv +¢

The Constant-Complement Approach

Example:
get :: Nat — Nat res :: Nat — Nat,

get n=n'div’ 2 res n=n ‘mod’ 2

inv :: (Nat, Naty) — Nat
inv (V,c)=2%Vv +¢

Then:
put :: Nat — Nat — Nat
put v/ s = inv (V/,res s)

The Constant-Complement Approach

Example:

get :: Nat — Nat res :: Nat — Nat,
get n=n'div’ 2 res n=n ‘mod’ 2

inv :: (Nat, Naty) — Nat
inv (V,c)=2%Vv +¢

Then:
put :: Nat — Nat — Nat
put v/ s = inv (V/,res s)
=2%Vv + s 'mod' 2

The Constant-Complement Approach

Example:
get :: Nat — Nat res :: Nat — Nat,
get n=n'div’ 2 res n=n ‘mod’ 2
Another choice for complement:

get :: Nat — Nat res :: Nat — Nat
get n=n'div’ 2 resn=n

The Constant-Complement Approach

Example:
get :: Nat — Nat res :: Nat — Nat,
get n=n'div’ 2 res n=n ‘mod’ 2
Another choice for complement:
get :» Nat — Nat res :: Nat — Nat

get n=n'div’ 2 resn=n

inv :: (Nat, Nat) — Nat
inv (V/,c) | (Vv ==getc)=c

The Constant-Complement Approach

Example:
get :: Nat — Nat res :: Nat — Nat,
get n=n'div’ 2 res n=n ‘mod’ 2
Another choice for complement:
get :: Nat — Nat res :: Nat — Nat
get n=n'div’ 2 resn=n
inv :: (Nat, Nat) — Nat
inv (V/,c) | (Vv ==getc)=c

Then:
put :: Nat — Nat — Nat

put Vs | (v ==gets)=s

Catering for Partiality

Still require that get :: S — V and res : § — C
are total and that paired is injective.

Catering for Partiality

Still require that get :: S — V and res : § — C
are total and that paired is injective.

But allow inv :: (V,C) — S, and instead of being
a full inverse of paired, only require that:

» invopaired = id

» paired o inv C id

Catering for Partiality

Still require that get :: S — V and res : § — C
are total and that paired is injective.

But allow inv :: (V,C) — S, and instead of being
a full inverse of paired, only require that:

» invopaired = id

» paired o inv C id
Guarantees (only):

» put (get s) s=s

» get (put v/ s) C v/

» (put v/ s)|} = put v’ (put v/ s) =put v' s

Choices to Make

For get :: Nat — Nat
get n=n'div’ 2
clearly
put :: Nat — Nat — Nat
put v/ s =2% v/ 4+ s ‘mod’ 2
better than
put :: Nat — Nat — Nat
put Vs | (v ==gets)=s

Choices to Make

For get :: Nat — Nat
get n=n'div’ 2
clearly
put :: Nat — Nat — Nat
put v/ s =2% v/ 4+ s ‘mod’ 2
better than
put :: Nat — Nat — Nat
put Vs | (v ==gets)=s

But what about:

put :: Nat — Nat — Nat
put vs=2%v' + (v 4+ ((s+ 1) ‘mod’ 4) ‘div' 2) ‘mod’ 2

5

Choices to Make

Different complement functions (res) lead to
different update functions (put):

V\s|o 1 2 3 V\s|0o 1 2 3
0 |01 0 1 0 |01 10
1 |2 323 s 1 |32 2 3
2 |45 45 2 |45 5 4
3 16 767 3 |766 7

Choices to Make

Different complement functions (res) lead to
different update functions (put):

V\s|o 1 2 3 V\s|0o 1 2 3
0 |01 0 1 0 |01 10
1 |2 323 s 1 |32 2 3
2 |45 45 2 |45 5 4
3 16 767 3 |766 7

In fact, res :: S — C is the only “handle” we have
for influencing the choice of put.

Small Complements

The bad thing about

res :: Nat — Nat
resn=n

is that it is “too injective”.

Small Complements

The bad thing about

res :: Nat — Nat
resn=n

is that it is “too injective”.

Note that we need
paired = As — (get s,res s)

to be injective, but not res itself.

Small Complements

The bad thing about

res :: Nat — Nat
resn=n

is that it is “too injective”.

Note that we need
paired = As — (get s,res s)

to be injective, but not res itself.

In fact, the “less injective”, the better!

Small Complements

Formally:

res; X res, < (ker resy) C (ker res;)

Small Complements

Formally:

res; X res, < (ker resy) C (ker res;)

Clearly fulfilled for:

resy :: Nat — Nat, res, :: Nat — Nat
res; n = n ‘mod’ 2 reso n=n

Small Complements

Formally:

res; X res, < (ker resy) C (ker res;)

Clearly fulfilled for:

resy :: Nat — Nat, res, :: Nat — Nat
res; n = n ‘mod’ 2 reso n=n

Theorem [Bancilhon & Spyratos, ACM TODS'81]:
For given get :: S — V/,

res; < res, & VV,s put, v sCoput; v's

Summary of the Approach to Bidirectionalization

Given get . S — V, find C and res :: § — C such
that paired = As — (get s, res s) is injective and
res is as small as possible with respect to <.

Summary of the Approach to Bidirectionalization

Given get . S — V, find C and res :: § — C such
that paired = As — (get s, res s) is injective and
res is as small as possible with respect to <.

Define (an effective!) inv :: (V,C) — S with:

1 if =35’ paired s’ = (V/, ¢)

inv (V/,¢c) = { /

s’ if paired s’ = (V/, c)

Summary of the Approach to Bidirectionalization

Given get . S — V, find C and res :: § — C such
that paired = As — (get s, res s) is injective and
res is as small as possible with respect to <.

Define (an effective!) inv :: (V,C) — S with:

1 if =35’ paired s’ = (V/, ¢)

inv (V/,¢c) = { /

s’ if paired s’ = (V/, c)

Set:
put:V—-5—-~5
put v/ s =inv (V/,res s)

Bidirectional Transformation

source view
i j get - i j
update

[N A/

Syntactic Bidirectionalization

[Matsuda et al., ICFP'07]

10

Bidirectional Transformation

source view
i j get R i i
update

Semantic Bidirectionalization

[V., POPL'09]

10

Taking Stock

[Matsuda et al., ICFP'07]:
» depends on syntactic restraints
» allows (ad-hoc) some shape-changing updates

[V., POPL'09]:
» very lightweight, easy access to bidirectionality
» essential role: polymorphic function types
» major problem: rejects shape-changing updates

[V. et al., ICFP'10]:
» synthesis of the two techniques
» inherits limitations in program coverage from both
» strictly better in terms of updatability than either

11

Scorecard

syntactic ‘ semantic | combined
Update? State-based
Bijective? No
Well behaved? Yes
Very well behaved? Yes No
Choice of put? No Yes
Total? No

References |

[§ F. Bancilhon and N. Spyratos.
Update semantics of relational views.
ACM Transactions on Database Systems, 6(3):557-575, 1981.

@ K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic
derivation of view complement functions.

In International Conference on Functional Programming,
Proceedings, pages 47-58. ACM Press, 2007.

[J. Voigtlander, Z. Hu, K. Matsuda, and M. Wang.
Combining syntactic and semantic bidirectionalization.
In International Conference on Functional Programming,
Proceedings, pages 181-192. ACM Press, 2010.

References |l

J. Voigtlander.
Bidirectionalization for freel!

In Principles of Programming Languages, Proceedings, pages
165-176. ACM Press, 20009.

P. Wadler.
Theorems for freel
In Functional Programming Languages and Computer
Architecture, Proceedings, pages 347-359. ACM Press, 1989.

14

	Bidirectional Transformation
	The Constant-Complement Approach
	Conclusion
	References

